3. 最大的矩形*****

这篇博客介绍了一个算法问题,即在给定的直方图中找到面积最大的矩形,该矩形的边必须与坐标轴平行。通过读取输入的矩形高度,使用栈来动态维护高度和对应索引,最终计算出最大矩形面积。提供的C++代码实现了这一算法,并给出了样例输入和输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 最大的矩形
    问题描述
    在横轴上放了 n 个相邻的矩形,每个矩形的宽度是 1,而第 i(1 ≤ i ≤ n)个矩形的高度是
    hi。这 n 个矩形构成了一个直方图。例如,下图中六个矩形的高度就分别是 3, 1, 6, 5, 2, 3。
    请找出能放在给定直方图里面积最大的矩形,它的边要与坐标轴平行。对于上面给出的例子,最
    大矩形如下图所示的阴影部分,面积是 10。
    输入格式
    第一行包含一个整数 n,即矩形的数量(1 ≤ n ≤ 1000)。
    第二行包含 n 个整数 h1, h2, … , hn,相邻的数之间由空格分隔。(1 ≤ hi ≤ 10000)。hi
    是第 i 个矩形的高度。
    输出格式
    输出一行,包含一个整数,即给定直方图内的最大矩形的面积。
    样例输入
    6
    3 1 6 5 2 3
    样例输出
    10
#include <bits/stdc++.h>

using namespace std;

int main()
{
    int n, a[1010], area, temp, ans = 0;
    cin>>n;
    for(int i = 0; i < n; i++)
        cin>>a[i];
    a[n] = 0;
    stack<int> s;
    for(int i = 0; i <= n; i++)
        if(s.empty() || a[s.top()] < a[i])
            s.push(i);
        else
        {
            temp = s.top();
            s.pop();
            area = a[temp] * (s.empty() ? i : i - s.top() - 1);
            if(area > ans)
                ans = area;
            i--;
        }
    cout<<ans<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值