论文阅读和分析Heart Rate Monitoring During Physical Exercise From Photoplethysmography Using Neural Network

该文探讨了在去除运动伪影后ACC数据中仍存在的噪声问题,并研究了ACC与心率变化之间的关系,通过建模和回归分析来处理异常。文中采用了一种算法框架,包括计算ACC的瞬时变化、使用神经网络进行预测、估计心率差以及线性回归。在后处理阶段,应用了滤波和三次样条插值方法来优化结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

主要内容:

1、探索ACC去除运动伪影后依然存在其他噪声影响的问题;

在这里插入图片描述

2、观察ACC和心率变化的相关性,建模;

在这里插入图片描述

3、对心率变化做回归分析,并且去除异常的结果;


算法框架:

1、计算SaccSaccSacc
Sacc,i=∑j=1n(Xacc,j2+Yacc,j2+Zacc,j2), S_{acc,i}=\sum_{j=1}^n(X_{acc,j}^2 +Y_{acc,j}^2 + Z_{acc,j}^2), Sacc,i=j=1n(Xacc,j2+Yacc,j2+Zacc,j2),

Sacc=Sacc,i−Sacc,i−1 S_{acc}=S_{acc,i}-S_{acc,i-1} Sacc=Sacc,iSacc,i1

2、计算βi\boldsymbol{\beta}_{i}βi:1×61\times61×6向量,[Sacc,i−6,…,Sacc,i][S_{acc,i-6},\dots,S_{acc,i}][Sacc,i6,,Sacc,i]

3、NN预测得到:r^\hat{\boldsymbol{r}}r^

4、估计的心率差:r\boldsymbol{r}r

5、3和4的结果线性回归;

6、后处理步骤:

过滤步骤:
hr′=(I+λDTD)−1hr hr'=\left(I+\lambda D^TD\right)^{-1}hr hr=(I+λDTD)1hr
如果被过滤掉,则拟合:
f(x)=a(x−x1)3+b(x−x1)2+c(x−x1)1+d f\left(x\right)=a\left(x-x_1\right)^3+b\left(x-x_1\right)^2+c\left(x-x_1\right)^1+d f(x)=a(xx1)3+b(xx1)2+c(xx1)1+d

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KPer_Yang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值