GPT

本文探讨了一种预训练和微调的方法来改进自然语言理解。通过在大量无标注文本上预训练模型,然后在特定任务上进行微调,该模型在多个任务上表现出优于专门设计的模型的效果。研究还分析了预训练模型在不同设置下的零样本性能,证明了它能习得适用于下游任务的有用语言知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Improving Language Understandingby Generative Pre-Training

论文

Abstract

本文为了解决自然语言理解任务,提出了pre-training和fine-tune模式,在无标注的文本中pre-training模型,再在具体任务中有标注地进行fine-tune,模型相比那些专门任务设计的模型,都展现了更好的效果

Introduction

大部分文本无标注,而标注会花费很多。所以会采用pre-trained的方法获得word的表示,本文目标实现一个很小的改变就适应大部分任务的模型。本文先在大量无标注文本进行语言模型训练,初始化模型参数,然后放到下游任务进行微调。模型基于transformer,在transfer阶段将结构化文本视作单个连续token序列。我们还分析了pre-trained模型在四个不同设置上的zero-shot表现,并证明它获得了用于下游任务的有用的语言知识

Related Work

  • Semi-supervised learning for NLP(Phrase-level or sentence-level embeddings)
  • Unsupervised pre-training(LSTM模型依赖太短)
  • Auxiliary training objectives(对应任务模型由其他任务训练帮助)

Framework

在这里插入图片描述
在fine-tune阶段对结构性文本进行变换:
Task-specific input transformations:

  • Textual entailment:用分隔符$分割前提和假设
  • Similarity:用分隔符$分割,并独立处理输入两种可能的顺序得到h并加起来
  • Question Answering and Commonsense Reasoning: [ z ; q ; < s > ; a k ] [z;q; <s>;a_k] [z;q;<s>;ak]

Experiments

模型参数:

  • pretrain:12层transformer的decoder层使用768维12头的mutihead, d f f = 3072 d_{ff}=3072 dff=3072 学习率2.5e-4,GELU激活函数(Gaussian Error Linear Unit)
  • fine-tune l r = 6.25 e − 5 , b a t c h s i z e = 32 , λ = 0.5 lr = 6.25e-5, batchsize=32,\lambda=0.5 lr=6.25e5,batchsize=32,λ=0.5
    在这里插入图片描述
    在这里插入图片描述

Analysis

在这里插入图片描述
随着transfer层数增加效果增加,不同模型zero-shot对比
在这里插入图片描述
在许多数据集中Transformer表现更好,auxiliary是必要的

05-26
### GPT 模型概述 GPT(Generative Pre-trained Transformer)是由 OpenAI 开发的一系列大型语言模型,旨在通过预训练和微调的方式生成高质量的自然语言文本[^2]。这些模型基于 Transformer 架构构建,并利用了大量的无监督数据进行预训练,在多种下游任务中表现出卓越性能。 最新版本的 GPT-4o 是 OpenAI 近期发布的一个重要更新,它进一步提升了模型的能力范围和效率[^1]。然而需要注意的是,具体的技术细节可能尚未完全公开,因此部分功能仍需等待官方文档确认。 #### Python 实现中的核心组件 对于开发者而言,理解如何设计并优化 GPT 模型至关重要。以下是几个主要方面: 1. **Transformer 架构**: GPT 的基础是 Transformer 结构,这是一种能够高效捕捉序列间依赖关系的神经网络架构。该结构由多个堆叠层组成,每层都包含了多头注意力机制以及前馈神经网络[^3]。 2. **注意力机制**: 注意力机制允许模型根据不同位置的重要性分配权重,从而更好地捕获上下文信息。这是使 GPT 能够生成连贯且语义丰富的句子的关键技术之一[^3]。 3. **模型训练与优化**: 训练过程通常涉及大量未标注的数据集用于自监督学习阶段;随后针对特定应用场景可以采用有标签的小规模数据集完成迁移学习或微调操作。为了提高计算资源利用率,还可以引入混合精度训练等策略来加速收敛速度[^3]。 下面展示了一个简单的基于 PyTorch 的 GPT 模型初始化代码片段: ```python import torch.nn as nn from transformers import GPT2Tokenizer, GPT2LMHeadModel tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2LMHeadModel.from_pretrained('gpt2') def generate_text(prompt, max_length=50): inputs = tokenizer.encode(prompt, return_tensors='pt') outputs = model.generate(inputs, max_length=max_length) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return result ``` 此脚本加载了预训练好的 `GPT2` 权重文件,并定义了一种基本的文字生成功能。用户可以通过调整参数来自定义输出长度或其他特性。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值