【bzoj3997】[TJOI2015]组合数学

本文介绍了一种基于网格图的财宝收集问题,并利用Dilworth定理来解决该问题。通过寻找最大点独立集,即一个从右上到左下的格子集合,使用动态规划的方法来确定最少需要走几次才能收集所有的财宝。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

Description

给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走。问至少走多少次才能将财宝捡完。此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少次才能把财宝全部捡完。

Input

第一行为正整数T,代表数据组数。

每组数据第一行为正整数N,M代表网格图有N行M列,接下来N行每行M个非负整数,表示此格子中财宝数量,0代表没有

Output

输出一个整数,表示至少要走多少次。

Sample Input

1

3 3

0 1 5

5 0 0

1 0 0

Sample Output

10

HINT

N<=1000,M<=1000.每个格子中财宝数不超过10^6

题解

Dilworth定理:DAG的最小链覆盖=最大点独立集。
头一次知道这个定理居然还有个名字。
那么这题就是求最大点独立集,显然是一个从右上到左下的点的集合。
直接DP求解就好了。

#include<bits/stdc++.h>
using namespace std;

inline int read(){
    int x = 0, f = 1; char c = getchar();
    while(!isdigit(c)) { if(c == '-') f = -1; c = getchar(); }
    while(isdigit(c)) { x = x * 10 + c - '0'; c = getchar(); }
    return x * f;
}

typedef long long ll;
const int N = 1000 + 10;
int a[N][N], n, m, t;
ll f[N][N];

void init(){
    n = read(), m = read();
    for(int i = 1; i <= n; i++)
    for(int j = 1; j <= m; j++)
        a[i][j] = read();
    memset(f, 0, sizeof(f));
}

void work(){
    t = read();
    while(t--){
        init();
        for(int i = 1; i <= n; i++)
            for(int j = m; j >= 1; j--)
                f[i][j] = max(f[i-1][j+1] + a[i][j], max(f[i-1][j], f[i][j+1]));
        printf("%lld\n", f[n][1]);
    }
}

int main(){
    work();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值