1.题目
给你一棵二叉树的根节点,返回该树的 直径 。
二叉树的 直径 是指树中任意两个节点之间最长路径的 长度 。这条路径可能经过也可能不经过根节点 root
。
两节点之间路径的 长度 由它们之间边数表示。
示例 1:
输入:root = [1,2,3,4,5] 输出:3 解释:3 ,取路径 [4,2,1,3] 或 [5,2,1,3] 的长度。
示例 2:
输入:root = [1,2] 输出:1
2.代码及解析
主要思想就求这个节点左右子树之和最大值,用递归就行
递归终止条件:
当节点为空时,返回深度 0。
递归过程:
计算左子树的深度
length1
。计算右子树的深度
length2
。更新全局变量
ret
,使其为当前最大直径值。返回当前子树的深度。
直径的计算:
直径是左右子树深度的和(
length1 + length2
),因为直径是经过当前节点的最长路径。通过递归遍历所有节点,确保找到全局最大直径。
示例
假设有以下二叉树:
复制
1 / \ 2 3 / \ 4 5
节点
1
的左子树深度为 2(路径2 -> 4
或2 -> 5
)。节点
1
的右子树深度为 1(节点3
)。经过节点
1
的直径为2 + 1 = 3
。全局最大直径为 3。
class Solution {
int ret=0;
int length(TreeNode* t){
if(t==nullptr){
return 0;
}
int length1 = length(t->left);
int length2 = length(t->right);
ret = max(ret,length1+length2);
return max(length1,length2)+1;
}
public:
int diameterOfBinaryTree(TreeNode* root) {
length(root);
return ret;
}
};