hadoop集群高可用配置及问题(下)

本文详细介绍了如何在Hadoop集群中配置YARN的高可用性,包括在yarn-site.xml文件中设置必要的属性,如ResourceManager HA配置、Zookeeper集群地址、自动恢复设置等,并提供了启动和验证服务的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前已经把hdfs高可用配置好了,接下来配置yarn的高可用

1.之前集群规划已提到要在bigdata1和bigdata2上配置resourcemanger服务,在yarn-site.xml中添加

<configuration>

    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>

    <!-- 启用resourcemanager ha -->
    <property>
        <name>yarn.resourcemanager.ha.enabled</name>
        <value>true</value>
    </property>
 
    <!-- 声明两台resourcemanager的地址 -->
    <property>
        <name>yarn.resourcemanager.cluster-id</name>
        <value>cluster-yarn1</value>
    </property>
    <!--指定resourcemanager的逻辑列表-->
    <property>
        <name>yarn.resourcemanager.ha.rm-ids</name>
        <value>rm1,rm2</value>
</property>
<!-- ========== rm1的配置 ========== -->
<!-- 指定rm1的主机名 -->
    <property>
        <name>yarn.resourcemanager.hostname.rm1</name>
        <value>bigdata1</value>
</property>
<!-- 指定rm1的web端地址 -->
<property>
     <name>yarn.resourcemanager.webapp.address.rm1</name>
     <value>bigdata1:8088</value>
</property>
<!-- 指定rm1的内部通信地址 -->
<property>
     <name>yarn.resourcemanager.address.rm1</name>
     <value>bigdata1:8032</value>
</property>
<!-- 指定AM向rm1申请资源的地址 -->
<property>
     <name>yarn.resourcemanager.scheduler.address.rm1</name>  
     <value>bigdata1:8030</value>
</property>
<!-- 指定供NM连接的地址 -->  
<property>
     <name>yarn.resourcemanager.resource-tracker.address.rm1</name>
     <value>bigdata1:8031</value>
</property>
<!-- ========== rm2的配置 ========== -->
    <!-- 指定rm2的主机名 -->
    <property>
        <name>yarn.resourcemanager.hostname.rm2</name>
        <value>bigdata2</value>
</property>
<property>
     <name>yarn.resourcemanager.webapp.address.rm2</name>
     <value>bigdata2:8088</value>
</property>
<property>
     <name>yarn.resourcemanager.address.rm2</name>
     <value>bigdata2:8032</value>
</property>
<property>
     <name>yarn.resourcemanager.scheduler.address.rm2</name>
     <value>bigdata2:8030</value>
</property>
<property>
     <name>yarn.resourcemanager.resource-tracker.address.rm2</name>
     <value>bigdata2:8031</value>
</property>
 
    <!-- 指定zookeeper集群的地址 --> 
    <property>
        <name>yarn.resourcemanager.zk-address</name>
        <value>bigdata1:2181,bigdata2:2181,bigdata3:2181</value>
    </property>

    <!-- 启用自动恢复 --> 
    <property>
        <name>yarn.resourcemanager.recovery.enabled</name>
        <value>true</value>
    </property>
 
    <!-- 指定resourcemanager的状态信息存储在zookeeper集群 --> 
    <property>
        <name>yarn.resourcemanager.store.class</name>
      <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
	</property>
<!-- 环境变量的继承 -->
 <property>
        <name>yarn.nodemanager.env-whitelist</name>
        <value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOME</value>
    </property>
	
	
	
	<!-- yarn容器允许分配的最大最小内存 -->
    <property>
        <name>yarn.scheduler.minimum-allocation-mb</name>
        <value>512</value>
    </property>
    <property>
        <name>yarn.scheduler.maximum-allocation-mb</name>
        <value>4096</value>
    </property>
    
    <!-- yarn容器允许管理的物理内存大小 -->
    <property>
        <name>yarn.nodemanager.resource.memory-mb</name>
        <value>4096</value>
    </property>
    
    <!-- 关闭yarn对物理内存和虚拟内存的限制检查 -->
    <property>
        <name>yarn.nodemanager.pmem-check-enabled</name>
        <value>true</value>
    </property>
    <property>
        <name>yarn.nodemanager.vmem-check-enabled</name>
        <value>false</value>
    </property>
	<!-- 开启日志聚集功能 -->
	<property>
		<name>yarn.log-aggregation-enable</name>
		<value>true</value>
	</property>

<!-- 设置日志聚集服务器地址 -->
	<property>  
		<name>yarn.log.server.url</name>  
		<value>http://bigdata1:19888/jobhistory/logs</value>
	</property>

<!-- 设置日志保留时间为7天 -->
<property>
    <name>yarn.log-aggregation.retain-seconds</name>
    <value>604800</value>
</property>

</configuration>

2.启动hdfs

3.启动yarn

在bigdata1上启动yarn

 4.查看服务状态

 

 5.web端查看yarn状态:********(ip地址):8088

到此,Hadoop高可用配置就完成了

<think>嗯,用户想查找关于Hadoop集群高可用性(HA)的配置方法或教程。首先,我需要确认用户的需求。他们可能正在搭建一个Hadoop集群,并且希望确保其高可用性,避免单点故障。接下来,我应该回顾已有的引用资料,看看里面有哪些有用的信息。 根据引用1,用户已经提到需要先搭建Hadoop集群和Zookeeper集群配置三个节点:master、node01、node02,并且修改了core-site.xml。这可能涉及到HDFSYARN配置。引用2则强调了HA的重要性,以及需要使用的技术,比如Quorum Journal Manager(QJM)和ZooKeeper Failover Controller(ZKFC)。引用3直接指向了官方文档,说明用户可能需要具体的步骤和配置文件。 我需要将这些信息整合成一个清晰的步骤指南。首先,基础环境准备,包括安装JDK、配置SSH免密登录、同步时间,这些是搭建集群的基本步骤。然后是Zookeeper集群的搭建,因为HA依赖ZooKeeper进行协调。接着是Hadoop集群本身的配置,特别是HDFS HA和YARN HA的配置,这需要修改core-site.xml、hdfs-site.xml、yarn-site.xml等文件。 需要注意的是,用户可能对某些配置参数不熟悉,比如JournalNode的地址、ZooKeeper的配置等。应该给出具体的例子,比如在core-site.xml中设置fs.defaultFS为hdfs://mycluster,以及配置ha.zookeeper.quorum。此外,启动顺序也很重要,先启动Zookeeper,然后是JournalNodes和ZKFC,接着格式化并启动HDFS,最后启动YARN。 用户可能还会遇到常见问题,比如配置错误、端口冲突、权限问题等,需要给出解决建议。此外,生成的相关问题可以帮助用户进一步了解性能优化、故障转移机制和监控管理,这些都是实际应用中可能需要的。 最后,确保所有步骤符合系统级指令,比如使用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$,但在这个回答中可能用不到数学公式。同时,引用标识要正确添加,比如在提到官方文档时添加[^3],在HA概述时添加[^2]等。 总结一下,回答需要分步骤详细说明配置方法,引用相关资料,结构清晰,并且提供相关问题帮助用户深入理解。同时,避免使用Markdown格式,保持自然的中文叙述,确保用户能够轻松跟随步骤进行操作。</think>### Hadoop集群高可用性(HA)配置方法 #### 一、基础环境准备 1. **节点规划**:至少3个节点(如`master`、`node01`、`node02`),需同时部署Hadoop和ZooKeeper集群[^1]。 2. **依赖安装**: - 安装JDK并配置环境变量。 - 配置SSH免密登录(所有节点间互通)。 - 确保时间同步(使用NTP服务)。 #### 二、ZooKeeper集群搭建 1. **配置文件`zoo.cfg`**: ```properties tickTime=2000 dataDir=/opt/zookeeper/data clientPort=2181 server.1=master:2888:3888 server.2=node01:2888:3888 server.3=node02:2888:3888 ``` 2. **启动ZooKeeper**: ```bash # 每个节点执行 bin/zkServer.sh start ``` #### 三、Hadoop集群配置 1. **HDFS HA配置**: - **`core-site.xml`**: ```xml <property> <name>fs.defaultFS</name> <value>hdfs://mycluster</value> <!-- 逻辑集群名称 --> </property> <property> <name>ha.zookeeper.quorum</name> <value>master:2181,node01:2181,node02:2181</value> </property> ``` - **`hdfs-site.xml`**: ```xml <property> <name>dfs.nameservices</name> <value>mycluster</value> </property> <property> <name>dfs.ha.namenodes.mycluster</name> <value>nn1,nn2</value> <!-- 两个NameNode标识 --> </property> <property> <name>dfs.namenode.rpc-address.mycluster.nn1</name> <value>master:8020</value> </property> <property> <name>dfs.namenode.rpc-address.mycluster.nn2</name> <value>node01:8020</value> </property> <property> <name>dfs.journalnode.edits.dir</name> <value>/opt/hadoop/journal</value> <!-- JournalNode数据目录 --> </property> ``` 2. **YARN HA配置**: - **`yarn-site.xml`**: ```xml <property> <name>yarn.resourcemanager.ha.enabled</name> <value>true</value> </property> <property> <name>yarn.resourcemanager.cluster-id</name> <value>yarn-cluster</value> </property> <property> <name>yarn.resourcemanager.ha.rm-ids</name> <value>rm1,rm2</value> </property> ``` #### 四、启动流程 1. 启动ZooKeeper集群。 2. 启动JournalNode服务(所有节点): ```bash hadoop-daemon.sh start journalnode ``` 3. 格式化并启动HDFS: ```bash # 在第一个NameNode(master)执行 hdfs namenode -format hdfs zkfc -formatZK # 初始化ZooKeeper start-dfs.sh ``` 4. 启动YARN: ```bash start-yarn.sh ``` #### 五、验证高可用性 - 通过`hdfs haadmin -getServiceState nn1`查看NameNode状态。 - 手动杀死活跃NameNode,观察备用节点是否自动切换。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值