张量运算真简单!PyTorch 数值计算操作完全指南

系列文章目录

Pytorch基础篇

01-PyTorch新手必看:张量是什么?5 分钟教你快速创建张量!
02-张量运算真简单!PyTorch 数值计算操作完全指南
03-Numpy 还是 PyTorch?张量与 Numpy 的神奇转换技巧
04-揭秘数据处理神器:PyTorch 张量拼接与拆分实用技巧
05-深度学习从索引开始:PyTorch 张量索引与切片最全解析
06-张量形状任意改!PyTorch reshape、transpose 操作超详细教程
07-深入解读 PyTorch 张量运算:6 大核心函数全面解析,代码示例一步到位!
08-自动微分到底有多强?PyTorch 自动求导机制深度解析

Pytorch实战篇

09-从零手写线性回归模型:PyTorch 实现深度学习入门教程
10-PyTorch 框架实现线性回归:从数据预处理到模型训练全流程
11-PyTorch 框架实现逻辑回归:从数据预处理到模型训练全流程
12-PyTorch 框架实现多层感知机(MLP):手写数字分类全流程详解



前言

在深度学习中,张量(Tensor)的基本运算是构建复杂模型的基础。PyTorch 提供了一系列丰富的张量操作函数,包括加减乘除、矩阵点乘以及矩阵乘积运算。通过这些操作,可以方便地完成数据处理和模型计算。


一、张量基本运算

PyTorch 中的张量基本运算函数包括 addsubmuldivneg 等。对于这些操作,带下划线的版本(如 add_sub_ 等)会直接修改原张量。

1.1 示例代码

import torch

def example01():
    data = torch.randint(1, 20, [2, 3])
    print("原始数据:\n", data)
    print('-' * 50)

    # 1. 不修改原数据
    new_data = data.add(5)  # 等价于 new_data = data + 5
    print("加法(不修改原数据):\n", new_data)
    print('-' * 50)

    # 2. 修改原数据
    data.add_(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吴师兄大模型

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值