系列文章目录
Pytorch基础篇
01-PyTorch新手必看:张量是什么?5 分钟教你快速创建张量!
02-张量运算真简单!PyTorch 数值计算操作完全指南
03-Numpy 还是 PyTorch?张量与 Numpy 的神奇转换技巧
04-揭秘数据处理神器:PyTorch 张量拼接与拆分实用技巧
05-深度学习从索引开始:PyTorch 张量索引与切片最全解析
06-张量形状任意改!PyTorch reshape、transpose 操作超详细教程
07-深入解读 PyTorch 张量运算:6 大核心函数全面解析,代码示例一步到位!
08-自动微分到底有多强?PyTorch 自动求导机制深度解析
Pytorch实战篇
09-从零手写线性回归模型:PyTorch 实现深度学习入门教程
10-PyTorch 框架实现线性回归:从数据预处理到模型训练全流程
11-PyTorch 框架实现逻辑回归:从数据预处理到模型训练全流程
12-PyTorch 框架实现多层感知机(MLP):手写数字分类全流程详解
前言
在深度学习中,张量(Tensor)的基本运算是构建复杂模型的基础。PyTorch 提供了一系列丰富的张量操作函数,包括加减乘除、矩阵点乘以及矩阵乘积运算。通过这些操作,可以方便地完成数据处理和模型计算。
一、张量基本运算
PyTorch 中的张量基本运算函数包括 add
、sub
、mul
、div
、neg
等。对于这些操作,带下划线的版本(如 add_
、sub_
等)会直接修改原张量。
1.1 示例代码
import torch
def example01():
data = torch.randint(1, 20, [2, 3])
print("原始数据:\n", data)
print('-' * 50)
# 1. 不修改原数据
new_data = data.add(5) # 等价于 new_data = data + 5
print("加法(不修改原数据):\n", new_data)
print('-' * 50)
# 2. 修改原数据
data.add_(