实体对齐3.IJCAI 2018:(BootEA)Bootstrapping Entity Alignment with Knowledge Graph Embedding

本文提出了一种bootstrapping方法用于基于嵌入的实体对齐,解决训练数据不足的问题。该方法通过迭代地标记可能的对齐,更新面向对齐的KG嵌入,并采用对齐编辑减少误差积累。实验显示,此方法在多个数据集上优于现有方法,自举过程能显著提升精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 关键词:Embedding-basedIterativate AlignmentAlignment editingBootstrapping

  • 摘要

现有的基于嵌入的实体对齐虽然效果不错,但仍面临着缺乏足够先验对齐作为标记训练数据的挑战。在本文中,我们对于基于嵌入的实体对齐提出一种bootstrapping方法。它迭代地将可能的实体对齐标记为训练数据,用于学习面向KG的实体嵌入。此外,它采用了一种对齐编辑方法来减少迭代过程中的误差积累。

  • 介绍

问题:

  1. 虽然在过去的几年中,单个KG的嵌入模型已被广泛研究,但面向对齐的KG嵌入仍在很大程度上未被探索;
  2. 基于嵌入的实体对齐通常依赖于已有的实体对齐(本文称为先验对齐)作为训练数据。然而,可用的先验对齐通常只占很小的比例。有限的训练数据会阻碍基于嵌入的方法学习用于实体对齐的精确嵌入。

本文贡献:

  1. 将实体对齐建模为分类问题,它寻求基于KG嵌入最大化所有标记和未标记实体的对齐可能性;
  2. 对于面向对齐的KG嵌入,我们提出了一个基于极限的目标函数,它对正三元组期望较低的分数,对负三元组期望较高的分数。为了对不易区分的负三元组进行采样,我们提出一个均匀负采样法。我们还在不同KG的三元组之间交换已对齐的实体,以校准统一空间中的嵌入。
  3. 为了克服训练数据不足的问题,我们提出了一个bootstrapping过程,通过标记可能的对齐并迭代地将其添加到训练数据中来更新面向对齐的嵌入。基于全局最优目标标注可能的对齐以保证精度,并采用对齐编辑方法减少误差积累。
  4. 我们在三个跨语言和两个大规模数据集上评估了提出的方法。实验结果表明,该方法明显优于现有的三种实体对齐方法。此外,自举过程可以使精度提高13%-18%。我们还对关键参数和标记可能对齐的准确性进行了分析。结果表明,所提出的负采样、可能对齐标记和编辑方法均有助于性能的提高。
  • 方法

1、面向对齐的KG嵌入(Alignment-Oriented KG Embedding 

TransE的得分函数可使正三元组分数低于负三元组,但不能保证正三元组的分数低到足以实现翻译。对于实体对齐来说,正三元组绝对的低分有助于减少嵌入在同一空间中的漂移,更好的捕获不同KG的公共语义。因此,我们基于limited-based loss提出一个新的目标函数,记为

  该目标函数有两个优良属性。首先,正例将会有低分同时负例会得到高分,即

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值