线段树介绍及线段树的使用场景

1.线段树用来解决什么问题

假如说你有一个数组,数组下标为 0-1000,然后对外提供一些方法,

1.1比如说你对外提供add方法,add方法(1,200,6),请你把从1 到 200 位置所有的值 加上6

1.2更新(update),传递一个范围,比如 (7,375,4) 7-375范围所有值变为4

1.3 query  比如(3,999) 查询3到999所有数据的和是多少。

如果暴力方法我们怎么来做啊,add方法遍历嘛,遍历1-200 每个加一个6,更新和query也一样。

所以说线段树用来解决什么问题,区间上统一增加,区间上统一修改,区间上统一查询累加和。而且还能很快。假如说数组一共N个数,线段树做上述操作,能够达到logN级别。

关于线段树的实现,有非递归方法,但是实现起来非常麻烦,本篇文章提供的是递归方法。那么有同学就担心了,那我在工程上使用会不会出问题啊,这里告诉大家,不会的,为啥呢,因为啊,对于线段树这种结构,哪怕你的 N 是 2的64次方,这个线段树最多往下多少层呢,也就64层,也就是说你虽然写了一个递归函数,但是这个递归函数的深度不会太大的。除非你是给神仙写代码,数据量都超过2的64次方了。那确实有可能出错吧。

一般来说,我们线段树数组的下表都是从 1 开始的。如下图

我们想做到这样一个树状结构的感觉,啥意思呢,就是整个范围,最大的格子兜着,然后它会将自己的范围,几乎一般的分给左右两侧,上述例子中,左孩子负责 1到2  右孩子负责 3-4 ,再把这个范围往下分,就如上图的叶子节点。当然实际实现的时候,是用数组实现的。

假设我有一个足够长的数组,0位置我们弃而不用。

是不是有点像堆的感觉。当然有一些公式同样适用,例如任何一个节点 i 的父节点 为 i/2,同样到底任何一节点i的左孩子为 2*i 位置;右孩子为 2 * i + 1 位置。这样就有一个问题了,数组我到底要准备多长,这里说一个结论,就是如果原数组长度为N的话, 用来存储数结构的数组准备4N绝对够用。

2.懒更新。

我们先说在一个范围上共同累加一个数字 V。

我们假设一个格子表示 1 - 1000 范围上的累加和是多少, 然后请你把 3 - 874 上所有的值加上 5。这个格子左侧范围是多少呢?没错,是 1 - 500,右侧范围呢  是 501 - 1000;你就知道,这个任务,既应该发给左孩子,右应该发给右孩子。为什么既要发给左孩子,又要发给右孩子呢,因为我这个任务没办法单独被左孩子搞定或者单独被右孩子搞定。这里我们先看左边,我们的左孩子就得到这个任务了,它的左孩子是谁,1 - 250,右孩子呢 251 - 500,总任务是啥  3 -  874,然后我们就知道,这个任务既要发给左,又要发给右,但问题是,我发给右侧之后,这个任务是在整个范围中全得做的。此时,右侧我就缓住不发了。这里我们可以再申请一个一样长的数组,用于存放懒更新的信息。我们就在新申请的数组中 表示 251 - 500 位置 的值设置 为 5,表示拦住该信息。它左边应不应该往下发,应该往下发,为啥,你的任务是 3 - 874 ,而你的范围是 1 - 250 ,没办法完全拦住,所以需要往下发,每次来新任务前,需要把旧的任务往下发一层。例如

假如说我来了一个任务,需要在 1 - 4 位置加一个 3 ,我们就把下面 1 位置更新为3,然后又来一个任务,我需要把 1 - 2 位置 加 一个 4 ,任务来之后,我们需要先检查是否有懒任务,有的话就往下发一层,我先检查 1-4 有没有,发现有,这样的话 往下发一层, 2 ,3 位置就都是 3,然后我1位置就能处理了。我发现 任务为 1- 2 位置加一个 4 只用发给左边,然后就往左边发,发时先检查有没有懒任务,发现有,就继续往下发一层,然后把2位置更新为四。所以,最后的数组应该是这样的 [X,0,4,3,3,3,0,0]

Code:

public class SegmentTree {

	public static class SegmentTree {
		// arr[]为原序列的信息从0开始,但在arr里是从1开始的
		// sum[]模拟线段树维护区间和
		// lazy[]为累加和懒惰标记
		// change[]为更新的值
		// update[]为更新慵懒标记
		private int MAXN;
		private int[] arr;
		private int[] sum;
		private int[] lazy;
		private int[] change;
		private boolean[] update;

		public SegmentTree(int[] origin) {
			MAXN = origin.length + 1;
			arr = new int[MAXN]; // arr[0] 不用 从1开始使用
			for (int i = 1; i < MAXN; i++) {
				arr[i] = origin[i - 1];
			}
			sum = new int[MAXN << 2]; // 用来支持脑补概念中,某一个范围的累加和信息
			lazy = new int[MAXN << 2]; // 用来支持脑补概念中,某一个范围沒有往下傳遞的纍加任務
			change = new int[MAXN << 2]; // 用来支持脑补概念中,某一个范围有没有更新操作的任务
			update = new boolean[MAXN << 2]; // 用来支持脑补概念中,某一个范围更新任务,更新成了什么
		}

		private void pushUp(int rt) {
			sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];
		}

		// 之前的,所有懒增加,和懒更新,从父范围,发给左右两个子范围
		// 分发策略是什么
		// ln表示左子树元素结点个数,rn表示右子树结点个数
		private void pushDown(int rt, int ln, int rn) {
			if (update[rt]) {
				update[rt << 1] = true;
				update[rt << 1 | 1] = true;
				change[rt << 1] = change[rt];
				change[rt << 1 | 1] = change[rt];
				lazy[rt << 1] = 0;
				lazy[rt << 1 | 1] = 0;
				sum[rt << 1] = change[rt] * ln;
				sum[rt << 1 | 1] = change[rt] * rn;
				update[rt] = false;
			}
			if (lazy[rt] != 0) {
				lazy[rt << 1] += lazy[rt];
				sum[rt << 1] += lazy[rt] * ln;
				lazy[rt << 1 | 1] += lazy[rt];
				sum[rt << 1 | 1] += lazy[rt] * rn;
				lazy[rt] = 0;
			}
		}

		// 在初始化阶段,先把sum数组,填好
		// 在arr[l~r]范围上,去build,1~N,
		// rt : 这个范围在sum中的下标
		public void build(int l, int r, int rt) {
			if (l == r) {
				sum[rt] = arr[l];
				return;
			}
			int mid = (l + r) >> 1;
			build(l, mid, rt << 1);
			build(mid + 1, r, rt << 1 | 1);
			pushUp(rt);
		}

		
		// L~R  所有的值变成C
		// l~r  rt
		public void update(int L, int R, int C, int l, int r, int rt) {
			if (L <= l && r <= R) {
				update[rt] = true;
				change[rt] = C;
				sum[rt] = C * (r - l + 1);
				lazy[rt] = 0;
				return;
			}
			// 当前任务躲不掉,无法懒更新,要往下发
			int mid = (l + r) >> 1;
			pushDown(rt, mid - l + 1, r - mid);
			if (L <= mid) {
				update(L, R, C, l, mid, rt << 1);
			}
			if (R > mid) {
				update(L, R, C, mid + 1, r, rt << 1 | 1);
			}
			pushUp(rt);
		}

		// L~R, C 任务!
		// rt,l~r
		public void add(int L, int R, int C, int l, int r, int rt) {
			// 任务如果把此时的范围全包了!
			if (L <= l && r <= R) {
				sum[rt] += C * (r - l + 1);
				lazy[rt] += C;
				return;
			}
			// 任务没有把你全包!
			// l  r  mid = (l+r)/2
			int mid = (l + r) >> 1;
			pushDown(rt, mid - l + 1, r - mid);
			// L~R
			if (L <= mid) {
				add(L, R, C, l, mid, rt << 1);
			}
			if (R > mid) {
				add(L, R, C, mid + 1, r, rt << 1 | 1);
			}
			pushUp(rt);
		}

		// 1~6 累加和是多少? 1~8 rt
		public long query(int L, int R, int l, int r, int rt) {
			if (L <= l && r <= R) {
				return sum[rt];
			}
			int mid = (l + r) >> 1;
			pushDown(rt, mid - l + 1, r - mid);
			long ans = 0;
			if (L <= mid) {
				ans += query(L, R, l, mid, rt << 1);
			}
			if (R > mid) {
				ans += query(L, R, mid + 1, r, rt << 1 | 1);
			}
			return ans;
		}

	}

	public static class Right {
		public int[] arr;

		public Right(int[] origin) {
			arr = new int[origin.length + 1];
			for (int i = 0; i < origin.length; i++) {
				arr[i + 1] = origin[i];
			}
		}

		public void update(int L, int R, int C) {
			for (int i = L; i <= R; i++) {
				arr[i] = C;
			}
		}

		public void add(int L, int R, int C) {
			for (int i = L; i <= R; i++) {
				arr[i] += C;
			}
		}

		public long query(int L, int R) {
			long ans = 0;
			for (int i = L; i <= R; i++) {
				ans += arr[i];
			}
			return ans;
		}

	}

	public static int[] genarateRandomArray(int len, int max) {
		int size = (int) (Math.random() * len) + 1;
		int[] origin = new int[size];
		for (int i = 0; i < size; i++) {
			origin[i] = (int) (Math.random() * max) - (int) (Math.random() * max);
		}
		return origin;
	}

	public static boolean test() {
		int len = 100;
		int max = 1000;
		int testTimes = 5000;
		int addOrUpdateTimes = 1000;
		int queryTimes = 500;
		for (int i = 0; i < testTimes; i++) {
			int[] origin = genarateRandomArray(len, max);
			SegmentTree seg = new SegmentTree(origin);
			int S = 1;
			int N = origin.length;
			int root = 1;
			seg.build(S, N, root);
			Right rig = new Right(origin);
			for (int j = 0; j < addOrUpdateTimes; j++) {
				int num1 = (int) (Math.random() * N) + 1;
				int num2 = (int) (Math.random() * N) + 1;
				int L = Math.min(num1, num2);
				int R = Math.max(num1, num2);
				int C = (int) (Math.random() * max) - (int) (Math.random() * max);
				if (Math.random() < 0.5) {
					seg.add(L, R, C, S, N, root);
					rig.add(L, R, C);
				} else {
					seg.update(L, R, C, S, N, root);
					rig.update(L, R, C);
				}
			}
			for (int k = 0; k < queryTimes; k++) {
				int num1 = (int) (Math.random() * N) + 1;
				int num2 = (int) (Math.random() * N) + 1;
				int L = Math.min(num1, num2);
				int R = Math.max(num1, num2);
				long ans1 = seg.query(L, R, S, N, root);
				long ans2 = rig.query(L, R);
				if (ans1 != ans2) {
					return false;
				}
			}
		}
		return true;
	}

	public static void main(String[] args) {
		int[] origin = { 2, 1, 1, 2, 3, 4, 5 };
		SegmentTree seg = new SegmentTree(origin);
		int S = 1; // 整个区间的开始位置,规定从1开始,不从0开始 -> 固定
		int N = origin.length; // 整个区间的结束位置,规定能到N,不是N-1 -> 固定
		int root = 1; // 整棵树的头节点位置,规定是1,不是0 -> 固定
		int L = 2; // 操作区间的开始位置 -> 可变
		int R = 5; // 操作区间的结束位置 -> 可变
		int C = 4; // 要加的数字或者要更新的数字 -> 可变
		// 区间生成,必须在[S,N]整个范围上build
		seg.build(S, N, root);
		// 区间修改,可以改变L、R和C的值,其他值不可改变
		seg.add(L, R, C, S, N, root);
		// 区间更新,可以改变L、R和C的值,其他值不可改变
		seg.update(L, R, C, S, N, root);
		// 区间查询,可以改变L和R的值,其他值不可改变
		long sum = seg.query(L, R, S, N, root);
		System.out.println(sum);

		System.out.println("对数器测试开始...");
		System.out.println("测试结果 : " + (test() ? "通过" : "未通过"));

	}

}

update:

同样我们准备一个update数组,如果我要在 1 - 500 所有范围内变成 7 ,就在update数组中,代表 1 - 500 位置 设置 值为7。那为啥还要有一个 bool 的数组的,因为如果是 0 的话,你不知道是表示没有update信息呢,还是要全部变为 0 呢。其他过程和add差不多。相信大家看代码很容易就能够看明白。这里面着重说一下pushDown方法为啥更新在前累加在后,因为我们更新操作是会把累加给清空的,如果更新数组和累加数组都有值,说明我们的更新操作是在累加之前。所以我们要先执行更新操作。

3.积方块问题

说,在一个X轴上,会落下一个方块,该方块由两个数组成;例如(1,4)代表左边为X坐标为 1,宽和高都是4的一个方块落下,如下图:

 问  当落下一个方块后,最高为多少?

这道题就涉及到线段树的改动了。当一个方块落下之后,再有一个方块落下,我们需要将第二个方块的范围的Max,并把该范围所有值更新为Max,然后再共同加上这个高。比如我这个方块宽度坐标为6-10,这里我们需要把6-10的最大值查询出来,并把6-10的值全部更新为最大值加上高度这个值。这里我们要的不是累加和,而是max ,这里就需要更改我们的线段树了。

public class FallingSquares {

	public static class SegmentTree {
		private int[] max;
		private int[] change;
		private boolean[] update;

		public SegmentTree(int size) {
			int N = size + 1;
			max = new int[N << 2];

			change = new int[N << 2];
			update = new boolean[N << 2];
		}

		private void pushUp(int rt) {
			max[rt] = Math.max(max[rt << 1], max[rt << 1 | 1]);
		}

		// ln表示左子树元素结点个数,rn表示右子树结点个数
		private void pushDown(int rt, int ln, int rn) {
			if (update[rt]) {
				update[rt << 1] = true;
				update[rt << 1 | 1] = true;
				change[rt << 1] = change[rt];
				change[rt << 1 | 1] = change[rt];
				max[rt << 1] = change[rt];
				max[rt << 1 | 1] = change[rt];
				update[rt] = false;
			}
		}

		public void update(int L, int R, int C, int l, int r, int rt) {
			if (L <= l && r <= R) {
				update[rt] = true;
				change[rt] = C;
				max[rt] = C;
				return;
			}
			int mid = (l + r) >> 1;
			pushDown(rt, mid - l + 1, r - mid);
			if (L <= mid) {
				update(L, R, C, l, mid, rt << 1);
			}
			if (R > mid) {
				update(L, R, C, mid + 1, r, rt << 1 | 1);
			}
			pushUp(rt);
		}

		public int query(int L, int R, int l, int r, int rt) {
			if (L <= l && r <= R) {
				return max[rt];
			}
			int mid = (l + r) >> 1;
			pushDown(rt, mid - l + 1, r - mid);
			int left = 0;
			int right = 0;
			if (L <= mid) {
				left = query(L, R, l, mid, rt << 1);
			}
			if (R > mid) {
				right = query(L, R, mid + 1, r, rt << 1 | 1);
			}
			return Math.max(left, right);
		}

	}

	public HashMap<Integer, Integer> index(int[][] positions) {
		TreeSet<Integer> pos = new TreeSet<>();
		for (int[] arr : positions) {
			pos.add(arr[0]);
			pos.add(arr[0] + arr[1] - 1);
		}
		HashMap<Integer, Integer> map = new HashMap<>();
		int count = 0;
		for (Integer index : pos) {
			map.put(index, ++count);
		}
		return map;
	}

	public List<Integer> fallingSquares(int[][] positions) {
		HashMap<Integer, Integer> map = index(positions);
		int N = map.size();
		SegmentTree segmentTree = new SegmentTree(N);
		int max = 0;
		List<Integer> res = new ArrayList<>();
		// 每落一个正方形,收集一下,所有东西组成的图像,最高高度是什么
		for (int[] arr : positions) {
			int L = map.get(arr[0]);
			int R = map.get(arr[0] + arr[1] - 1);
			int height = segmentTree.query(L, R, 1, N, 1) + arr[1];
			max = Math.max(max, height);
			res.add(max);
			segmentTree.update(L, R, height, 1, N, 1);
		}
		return res;
	}

}

 4.什么问题适合线段树

       我们可以根据左树信息和右树信息直接加工出我的信息的题目,可以用到线段树,有些就不能,例如,一个数组中 求出现最多的数,这个就不可以,假如说我分为两半,左树出现最多的数字为 13 右树出现最多的数是 10,那么出现最多的数一定是  13 或者 10 中的一个吗?

不一定,因为可能有一个数,在左边不是最多的,在右边也不是最多的,但是加起来,却是最多的,所以该情况不可以使用线段树。所以线段树只适合于我可以根据左树和右树,加工出我自己信息的情况。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值