1.线段树用来解决什么问题
假如说你有一个数组,数组下标为 0-1000,然后对外提供一些方法,
1.1比如说你对外提供add方法,add方法(1,200,6),请你把从1 到 200 位置所有的值 加上6
1.2更新(update),传递一个范围,比如 (7,375,4) 7-375范围所有值变为4
1.3 query 比如(3,999) 查询3到999所有数据的和是多少。
如果暴力方法我们怎么来做啊,add方法遍历嘛,遍历1-200 每个加一个6,更新和query也一样。
所以说线段树用来解决什么问题,区间上统一增加,区间上统一修改,区间上统一查询累加和。而且还能很快。假如说数组一共N个数,线段树做上述操作,能够达到logN级别。
关于线段树的实现,有非递归方法,但是实现起来非常麻烦,本篇文章提供的是递归方法。那么有同学就担心了,那我在工程上使用会不会出问题啊,这里告诉大家,不会的,为啥呢,因为啊,对于线段树这种结构,哪怕你的 N 是 2的64次方,这个线段树最多往下多少层呢,也就64层,也就是说你虽然写了一个递归函数,但是这个递归函数的深度不会太大的。除非你是给神仙写代码,数据量都超过2的64次方了。那确实有可能出错吧。
一般来说,我们线段树数组的下表都是从 1 开始的。如下图
我们想做到这样一个树状结构的感觉,啥意思呢,就是整个范围,最大的格子兜着,然后它会将自己的范围,几乎一般的分给左右两侧,上述例子中,左孩子负责 1到2 右孩子负责 3-4 ,再把这个范围往下分,就如上图的叶子节点。当然实际实现的时候,是用数组实现的。
假设我有一个足够长的数组,0位置我们弃而不用。
是不是有点像堆的感觉。当然有一些公式同样适用,例如任何一个节点 i 的父节点 为 i/2,同样到底任何一节点i的左孩子为 2*i 位置;右孩子为 2 * i + 1 位置。这样就有一个问题了,数组我到底要准备多长,这里说一个结论,就是如果原数组长度为N的话, 用来存储数结构的数组准备4N绝对够用。
2.懒更新。
我们先说在一个范围上共同累加一个数字 V。
我们假设一个格子表示 1 - 1000 范围上的累加和是多少, 然后请你把 3 - 874 上所有的值加上 5。这个格子左侧范围是多少呢?没错,是 1 - 500,右侧范围呢 是 501 - 1000;你就知道,这个任务,既应该发给左孩子,右应该发给右孩子。为什么既要发给左孩子,又要发给右孩子呢,因为我这个任务没办法单独被左孩子搞定或者单独被右孩子搞定。这里我们先看左边,我们的左孩子就得到这个任务了,它的左孩子是谁,1 - 250,右孩子呢 251 - 500,总任务是啥 3 - 874,然后我们就知道,这个任务既要发给左,又要发给右,但问题是,我发给右侧之后,这个任务是在整个范围中全得做的。此时,右侧我就缓住不发了。这里我们可以再申请一个一样长的数组,用于存放懒更新的信息。我们就在新申请的数组中 表示 251 - 500 位置 的值设置 为 5,表示拦住该信息。它左边应不应该往下发,应该往下发,为啥,你的任务是 3 - 874 ,而你的范围是 1 - 250 ,没办法完全拦住,所以需要往下发,每次来新任务前,需要把旧的任务往下发一层。例如
假如说我来了一个任务,需要在 1 - 4 位置加一个 3 ,我们就把下面 1 位置更新为3,然后又来一个任务,我需要把 1 - 2 位置 加 一个 4 ,任务来之后,我们需要先检查是否有懒任务,有的话就往下发一层,我先检查 1-4 有没有,发现有,这样的话 往下发一层, 2 ,3 位置就都是 3,然后我1位置就能处理了。我发现 任务为 1- 2 位置加一个 4 只用发给左边,然后就往左边发,发时先检查有没有懒任务,发现有,就继续往下发一层,然后把2位置更新为四。所以,最后的数组应该是这样的 [X,0,4,3,3,3,0,0]
Code:
public class SegmentTree {
public static class SegmentTree {
// arr[]为原序列的信息从0开始,但在arr里是从1开始的
// sum[]模拟线段树维护区间和
// lazy[]为累加和懒惰标记
// change[]为更新的值
// update[]为更新慵懒标记
private int MAXN;
private int[] arr;
private int[] sum;
private int[] lazy;
private int[] change;
private boolean[] update;
public SegmentTree(int[] origin) {
MAXN = origin.length + 1;
arr = new int[MAXN]; // arr[0] 不用 从1开始使用
for (int i = 1; i < MAXN; i++) {
arr[i] = origin[i - 1];
}
sum = new int[MAXN << 2]; // 用来支持脑补概念中,某一个范围的累加和信息
lazy = new int[MAXN << 2]; // 用来支持脑补概念中,某一个范围沒有往下傳遞的纍加任務
change = new int[MAXN << 2]; // 用来支持脑补概念中,某一个范围有没有更新操作的任务
update = new boolean[MAXN << 2]; // 用来支持脑补概念中,某一个范围更新任务,更新成了什么
}
private void pushUp(int rt) {
sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];
}
// 之前的,所有懒增加,和懒更新,从父范围,发给左右两个子范围
// 分发策略是什么
// ln表示左子树元素结点个数,rn表示右子树结点个数
private void pushDown(int rt, int ln, int rn) {
if (update[rt]) {
update[rt << 1] = true;
update[rt << 1 | 1] = true;
change[rt << 1] = change[rt];
change[rt << 1 | 1] = change[rt];
lazy[rt << 1] = 0;
lazy[rt << 1 | 1] = 0;
sum[rt << 1] = change[rt] * ln;
sum[rt << 1 | 1] = change[rt] * rn;
update[rt] = false;
}
if (lazy[rt] != 0) {
lazy[rt << 1] += lazy[rt];
sum[rt << 1] += lazy[rt] * ln;
lazy[rt << 1 | 1] += lazy[rt];
sum[rt << 1 | 1] += lazy[rt] * rn;
lazy[rt] = 0;
}
}
// 在初始化阶段,先把sum数组,填好
// 在arr[l~r]范围上,去build,1~N,
// rt : 这个范围在sum中的下标
public void build(int l, int r, int rt) {
if (l == r) {
sum[rt] = arr[l];
return;
}
int mid = (l + r) >> 1;
build(l, mid, rt << 1);
build(mid + 1, r, rt << 1 | 1);
pushUp(rt);
}
// L~R 所有的值变成C
// l~r rt
public void update(int L, int R, int C, int l, int r, int rt) {
if (L <= l && r <= R) {
update[rt] = true;
change[rt] = C;
sum[rt] = C * (r - l + 1);
lazy[rt] = 0;
return;
}
// 当前任务躲不掉,无法懒更新,要往下发
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
if (L <= mid) {
update(L, R, C, l, mid, rt << 1);
}
if (R > mid) {
update(L, R, C, mid + 1, r, rt << 1 | 1);
}
pushUp(rt);
}
// L~R, C 任务!
// rt,l~r
public void add(int L, int R, int C, int l, int r, int rt) {
// 任务如果把此时的范围全包了!
if (L <= l && r <= R) {
sum[rt] += C * (r - l + 1);
lazy[rt] += C;
return;
}
// 任务没有把你全包!
// l r mid = (l+r)/2
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
// L~R
if (L <= mid) {
add(L, R, C, l, mid, rt << 1);
}
if (R > mid) {
add(L, R, C, mid + 1, r, rt << 1 | 1);
}
pushUp(rt);
}
// 1~6 累加和是多少? 1~8 rt
public long query(int L, int R, int l, int r, int rt) {
if (L <= l && r <= R) {
return sum[rt];
}
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
long ans = 0;
if (L <= mid) {
ans += query(L, R, l, mid, rt << 1);
}
if (R > mid) {
ans += query(L, R, mid + 1, r, rt << 1 | 1);
}
return ans;
}
}
public static class Right {
public int[] arr;
public Right(int[] origin) {
arr = new int[origin.length + 1];
for (int i = 0; i < origin.length; i++) {
arr[i + 1] = origin[i];
}
}
public void update(int L, int R, int C) {
for (int i = L; i <= R; i++) {
arr[i] = C;
}
}
public void add(int L, int R, int C) {
for (int i = L; i <= R; i++) {
arr[i] += C;
}
}
public long query(int L, int R) {
long ans = 0;
for (int i = L; i <= R; i++) {
ans += arr[i];
}
return ans;
}
}
public static int[] genarateRandomArray(int len, int max) {
int size = (int) (Math.random() * len) + 1;
int[] origin = new int[size];
for (int i = 0; i < size; i++) {
origin[i] = (int) (Math.random() * max) - (int) (Math.random() * max);
}
return origin;
}
public static boolean test() {
int len = 100;
int max = 1000;
int testTimes = 5000;
int addOrUpdateTimes = 1000;
int queryTimes = 500;
for (int i = 0; i < testTimes; i++) {
int[] origin = genarateRandomArray(len, max);
SegmentTree seg = new SegmentTree(origin);
int S = 1;
int N = origin.length;
int root = 1;
seg.build(S, N, root);
Right rig = new Right(origin);
for (int j = 0; j < addOrUpdateTimes; j++) {
int num1 = (int) (Math.random() * N) + 1;
int num2 = (int) (Math.random() * N) + 1;
int L = Math.min(num1, num2);
int R = Math.max(num1, num2);
int C = (int) (Math.random() * max) - (int) (Math.random() * max);
if (Math.random() < 0.5) {
seg.add(L, R, C, S, N, root);
rig.add(L, R, C);
} else {
seg.update(L, R, C, S, N, root);
rig.update(L, R, C);
}
}
for (int k = 0; k < queryTimes; k++) {
int num1 = (int) (Math.random() * N) + 1;
int num2 = (int) (Math.random() * N) + 1;
int L = Math.min(num1, num2);
int R = Math.max(num1, num2);
long ans1 = seg.query(L, R, S, N, root);
long ans2 = rig.query(L, R);
if (ans1 != ans2) {
return false;
}
}
}
return true;
}
public static void main(String[] args) {
int[] origin = { 2, 1, 1, 2, 3, 4, 5 };
SegmentTree seg = new SegmentTree(origin);
int S = 1; // 整个区间的开始位置,规定从1开始,不从0开始 -> 固定
int N = origin.length; // 整个区间的结束位置,规定能到N,不是N-1 -> 固定
int root = 1; // 整棵树的头节点位置,规定是1,不是0 -> 固定
int L = 2; // 操作区间的开始位置 -> 可变
int R = 5; // 操作区间的结束位置 -> 可变
int C = 4; // 要加的数字或者要更新的数字 -> 可变
// 区间生成,必须在[S,N]整个范围上build
seg.build(S, N, root);
// 区间修改,可以改变L、R和C的值,其他值不可改变
seg.add(L, R, C, S, N, root);
// 区间更新,可以改变L、R和C的值,其他值不可改变
seg.update(L, R, C, S, N, root);
// 区间查询,可以改变L和R的值,其他值不可改变
long sum = seg.query(L, R, S, N, root);
System.out.println(sum);
System.out.println("对数器测试开始...");
System.out.println("测试结果 : " + (test() ? "通过" : "未通过"));
}
}
update:
同样我们准备一个update数组,如果我要在 1 - 500 所有范围内变成 7 ,就在update数组中,代表 1 - 500 位置 设置 值为7。那为啥还要有一个 bool 的数组的,因为如果是 0 的话,你不知道是表示没有update信息呢,还是要全部变为 0 呢。其他过程和add差不多。相信大家看代码很容易就能够看明白。这里面着重说一下pushDown方法为啥更新在前累加在后,因为我们更新操作是会把累加给清空的,如果更新数组和累加数组都有值,说明我们的更新操作是在累加之前。所以我们要先执行更新操作。
3.积方块问题
说,在一个X轴上,会落下一个方块,该方块由两个数组成;例如(1,4)代表左边为X坐标为 1,宽和高都是4的一个方块落下,如下图:
问 当落下一个方块后,最高为多少?
这道题就涉及到线段树的改动了。当一个方块落下之后,再有一个方块落下,我们需要将第二个方块的范围的Max,并把该范围所有值更新为Max,然后再共同加上这个高。比如我这个方块宽度坐标为6-10,这里我们需要把6-10的最大值查询出来,并把6-10的值全部更新为最大值加上高度这个值。这里我们要的不是累加和,而是max ,这里就需要更改我们的线段树了。
public class FallingSquares {
public static class SegmentTree {
private int[] max;
private int[] change;
private boolean[] update;
public SegmentTree(int size) {
int N = size + 1;
max = new int[N << 2];
change = new int[N << 2];
update = new boolean[N << 2];
}
private void pushUp(int rt) {
max[rt] = Math.max(max[rt << 1], max[rt << 1 | 1]);
}
// ln表示左子树元素结点个数,rn表示右子树结点个数
private void pushDown(int rt, int ln, int rn) {
if (update[rt]) {
update[rt << 1] = true;
update[rt << 1 | 1] = true;
change[rt << 1] = change[rt];
change[rt << 1 | 1] = change[rt];
max[rt << 1] = change[rt];
max[rt << 1 | 1] = change[rt];
update[rt] = false;
}
}
public void update(int L, int R, int C, int l, int r, int rt) {
if (L <= l && r <= R) {
update[rt] = true;
change[rt] = C;
max[rt] = C;
return;
}
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
if (L <= mid) {
update(L, R, C, l, mid, rt << 1);
}
if (R > mid) {
update(L, R, C, mid + 1, r, rt << 1 | 1);
}
pushUp(rt);
}
public int query(int L, int R, int l, int r, int rt) {
if (L <= l && r <= R) {
return max[rt];
}
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
int left = 0;
int right = 0;
if (L <= mid) {
left = query(L, R, l, mid, rt << 1);
}
if (R > mid) {
right = query(L, R, mid + 1, r, rt << 1 | 1);
}
return Math.max(left, right);
}
}
public HashMap<Integer, Integer> index(int[][] positions) {
TreeSet<Integer> pos = new TreeSet<>();
for (int[] arr : positions) {
pos.add(arr[0]);
pos.add(arr[0] + arr[1] - 1);
}
HashMap<Integer, Integer> map = new HashMap<>();
int count = 0;
for (Integer index : pos) {
map.put(index, ++count);
}
return map;
}
public List<Integer> fallingSquares(int[][] positions) {
HashMap<Integer, Integer> map = index(positions);
int N = map.size();
SegmentTree segmentTree = new SegmentTree(N);
int max = 0;
List<Integer> res = new ArrayList<>();
// 每落一个正方形,收集一下,所有东西组成的图像,最高高度是什么
for (int[] arr : positions) {
int L = map.get(arr[0]);
int R = map.get(arr[0] + arr[1] - 1);
int height = segmentTree.query(L, R, 1, N, 1) + arr[1];
max = Math.max(max, height);
res.add(max);
segmentTree.update(L, R, height, 1, N, 1);
}
return res;
}
}
4.什么问题适合线段树
我们可以根据左树信息和右树信息直接加工出我的信息的题目,可以用到线段树,有些就不能,例如,一个数组中 求出现最多的数,这个就不可以,假如说我分为两半,左树出现最多的数字为 13 右树出现最多的数是 10,那么出现最多的数一定是 13 或者 10 中的一个吗?
不一定,因为可能有一个数,在左边不是最多的,在右边也不是最多的,但是加起来,却是最多的,所以该情况不可以使用线段树。所以线段树只适合于我可以根据左树和右树,加工出我自己信息的情况。