HDU - 3251 Being a Hero(最小割)

本文介绍了一种使用最小割算法解决特定问题的方法:一个国王奖励英雄城镇,英雄需确保国王无法到达所选城镇。文章详细阐述了解题思路及具体的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目大意:有一个国王要奖励英雄一些城镇,英雄可以从国王奖励的城镇中挑选k个,每个城镇都有相应的value
但国王又不想走到这个英雄选择的城镇,所以英雄选择了城镇的时候就要考虑要炸掉哪些路,使得国王走不到他的城镇,每条道路都有相应的value
问英雄的最大获利,和需要炸掉的路是哪些

解题思路:假设国王所在的地点是u,英雄所选择的城镇是v,现在的任务就是破坏掉s–>u…->v->t(s是源点,t是汇点)且花费的价值最小,所以就是要求最小割了
剩下的任务就是建图了,源点和国王所在地连接,容量为INF
英雄可以选择的城镇跟汇点连接,容量为相应的value
剩下的就是有向道路的连接了
最大的价值就是可选的城镇的总value - 最小割(最大流)

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
const int MAXNODE = 1010;
const int MAXEDGE = 300010;
typedef int Type;
const Type INF = 0x3f3f3f3f;

struct Edge{
    int u, v, next, id;
    Type cap, flow;
    Edge() {}
    Edge(int u, int v, Type cap, Type flow, int next, int id) : u(u), v(v), cap(cap), flow(flow), next(next), id(id){}
};

struct Dinic{
    int n, m, s, t;
    Edge edges[MAXEDGE];
    int head[MAXNODE];
    int cur[MAXNODE];
    bool vis[MAXNODE];
    Type d[MAXNODE];
    vector<int> cut;

    void init(int n) {
        this->n = n;
        memset(head, -1, sizeof(head));
        m = 0;
    }

    void AddEdge(int u, int v, Type cap, int id) {
        edges[m] = Edge(u, v, cap, 0, head[u], id);
        head[u] = m++;
        edges[m] = Edge(v, u, 0, 0, head[v], id);
        head[v] = m++;
    } 

    bool BFS() {
        memset(vis, 0, sizeof(vis));
        queue<int> Q;
        Q.push(s);
        d[s] = 0;
        vis[s] = 1;

        while (!Q.empty()) {
            int u = Q.front(); Q.pop();
            for (int i = head[u]; ~i; i = edges[i].next) {
                Edge &e = edges[i];
                if (!vis[e.v] && e.cap > e.flow) {
                    vis[e.v] = true;
                    d[e.v] = d[u] + 1;
                    Q.push(e.v);
                }
            }
        }
        return vis[t];
    }

    Type DFS(int u, Type a) {
        if (u == t || a == 0) return a;

        Type flow = 0, f;
        for (int &i = cur[u]; i != -1; i = edges[i].next) {
            Edge &e = edges[i];
            if (d[u] + 1 == d[e.v] && (f = DFS(e.v, min(a, e.cap - e.flow))) > 0) {
                e.flow += f;
                edges[i ^ 1].flow -= f;
                flow += f;
                a -= f;
                if (a == 0) break;
            }
        }
        return flow;
    }

    Type Maxflow(int s, int t) {
        this->s = s; this->t = t;
        Type flow = 0;
        while (BFS()) {
            for (int i = 0; i < n; i++)
                cur[i] = head[i];
            flow += DFS(s, INF);
        }
        return flow;
    }

    void Mincut() {
        cut.clear();
        for (int i = 0; i < m; i += 2) {
            if (vis[edges[i].u] && !vis[edges[i].v] && edges[i].id != 0) 
                cut.push_back(i);
        }
    }
}dinic;

int n, m, f, cas = 1;
void solve() {
    scanf("%d%d%d", &n, &m, &f);
    int source = 0, sink = n + 1;
    dinic.init(sink + 1);
    dinic.AddEdge(source, 1, INF, 0);

    int u, v, c;
    int Sum = 0;
    for (int i = 1; i <= m; i++) {
        scanf("%d%d%d", &u, &v, &c);
        dinic.AddEdge(u, v, c, i);
    }

    for (int i = 1; i <= f; i++) {
        scanf("%d%d", &u, &c);
        Sum += c;
        dinic.AddEdge(u, sink, c, 0);
    }
    printf("Case %d: %d\n", cas++, Sum - dinic.Maxflow(source, sink));
    dinic.Mincut();
    printf("%d", dinic.cut.size());
    for (int i = 0; i < dinic.cut.size(); i++) 
        printf(" %d", dinic.edges[dinic.cut[i]].id);
    printf("\n");




}

int main() {
    int test;
    scanf("%d", &test);
    while (test--) solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值