题目大意:有一个国王要奖励英雄一些城镇,英雄可以从国王奖励的城镇中挑选k个,每个城镇都有相应的value
但国王又不想走到这个英雄选择的城镇,所以英雄选择了城镇的时候就要考虑要炸掉哪些路,使得国王走不到他的城镇,每条道路都有相应的value
问英雄的最大获利,和需要炸掉的路是哪些
解题思路:假设国王所在的地点是u,英雄所选择的城镇是v,现在的任务就是破坏掉s–>u…->v->t(s是源点,t是汇点)且花费的价值最小,所以就是要求最小割了
剩下的任务就是建图了,源点和国王所在地连接,容量为INF
英雄可以选择的城镇跟汇点连接,容量为相应的value
剩下的就是有向道路的连接了
最大的价值就是可选的城镇的总value - 最小割(最大流)
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
const int MAXNODE = 1010;
const int MAXEDGE = 300010;
typedef int Type;
const Type INF = 0x3f3f3f3f;
struct Edge{
int u, v, next, id;
Type cap, flow;
Edge() {}
Edge(int u, int v, Type cap, Type flow, int next, int id) : u(u), v(v), cap(cap), flow(flow), next(next), id(id){}
};
struct Dinic{
int n, m, s, t;
Edge edges[MAXEDGE];
int head[MAXNODE];
int cur[MAXNODE];
bool vis[MAXNODE];
Type d[MAXNODE];
vector<int> cut;
void init(int n) {
this->n = n;
memset(head, -1, sizeof(head));
m = 0;
}
void AddEdge(int u, int v, Type cap, int id) {
edges[m] = Edge(u, v, cap, 0, head[u], id);
head[u] = m++;
edges[m] = Edge(v, u, 0, 0, head[v], id);
head[v] = m++;
}
bool BFS() {
memset(vis, 0, sizeof(vis));
queue<int> Q;
Q.push(s);
d[s] = 0;
vis[s] = 1;
while (!Q.empty()) {
int u = Q.front(); Q.pop();
for (int i = head[u]; ~i; i = edges[i].next) {
Edge &e = edges[i];
if (!vis[e.v] && e.cap > e.flow) {
vis[e.v] = true;
d[e.v] = d[u] + 1;
Q.push(e.v);
}
}
}
return vis[t];
}
Type DFS(int u, Type a) {
if (u == t || a == 0) return a;
Type flow = 0, f;
for (int &i = cur[u]; i != -1; i = edges[i].next) {
Edge &e = edges[i];
if (d[u] + 1 == d[e.v] && (f = DFS(e.v, min(a, e.cap - e.flow))) > 0) {
e.flow += f;
edges[i ^ 1].flow -= f;
flow += f;
a -= f;
if (a == 0) break;
}
}
return flow;
}
Type Maxflow(int s, int t) {
this->s = s; this->t = t;
Type flow = 0;
while (BFS()) {
for (int i = 0; i < n; i++)
cur[i] = head[i];
flow += DFS(s, INF);
}
return flow;
}
void Mincut() {
cut.clear();
for (int i = 0; i < m; i += 2) {
if (vis[edges[i].u] && !vis[edges[i].v] && edges[i].id != 0)
cut.push_back(i);
}
}
}dinic;
int n, m, f, cas = 1;
void solve() {
scanf("%d%d%d", &n, &m, &f);
int source = 0, sink = n + 1;
dinic.init(sink + 1);
dinic.AddEdge(source, 1, INF, 0);
int u, v, c;
int Sum = 0;
for (int i = 1; i <= m; i++) {
scanf("%d%d%d", &u, &v, &c);
dinic.AddEdge(u, v, c, i);
}
for (int i = 1; i <= f; i++) {
scanf("%d%d", &u, &c);
Sum += c;
dinic.AddEdge(u, sink, c, 0);
}
printf("Case %d: %d\n", cas++, Sum - dinic.Maxflow(source, sink));
dinic.Mincut();
printf("%d", dinic.cut.size());
for (int i = 0; i < dinic.cut.size(); i++)
printf(" %d", dinic.edges[dinic.cut[i]].id);
printf("\n");
}
int main() {
int test;
scanf("%d", &test);
while (test--) solve();
return 0;
}