活动规划问题的应用

问题描述:区间相交

实质就是求相交区间的总和。

首先明确自己是不可能与自己相交的,即单独一行的各个区间之间是不重叠的。所以在向后查找的时候能够确保程序的正确性。


这里采用贪心的思想,先只考虑眼前的(所以要先排序),然后比较不同情况考虑:1:内部相交;2:两两部分相交;3:没有相交;

#include<stdio.h>
int main( )
{
    int m;
    while(~scanf("%d",&m))
    {
        int i,j,n;double a[110]={0},b[110]={0};  
        for(i=0;i<m;i++)scanf("%lf%lf",&a[i],&b[i]); //a数组存储<span style="font-family: Arial, Helvetica, sans-serif;">区间</span><span style="font-family: Arial, Helvetica, sans-serif;">起始端点,b数组存储区间结束时间。</span>
        scanf("%d",&n);
        for(i=m;i<m+n;i++)scanf("%lf%lf",&a[i],&b[i]);
        //冒泡排序
        for(i=0;i<m+n-1;i++)
            for(j=1;j<m+n-i;j++)
            {
                if(a[j]<a[j-1]){
                    double aa=a[j];a[j]=a[j-1];a[j-1]=aa;
                    double bb=b[j];b[j]=b[j-1];b[j-1]=bb;
                }
                else if(a[j]==a[j-1]&&b[j]<b[j-1]){
                    double bb=b[j];b[j]=b[j-1];b[j-1]=bb;
                }
            }
        //比较不同情况
        i=0;double len=0;
        while(i<m+n){
            for(j=i+1;j<m+n;j++){
                if(a[j]<b[i]){
                    if(b[j]<=b[i])len+=b[j]-a[j];//[1,10]与[3,7]相交类型
                    else {len+=b[i]-a[j];i=j-1;break;}//[1,10]与[9,15]相交类型
                }
                else {i=j-1;break;}//没有公共相交部分
            }
            i++;
        }
        printf("%.3lf\n",len);
    }
    return 0;
}


内容概要:本文探讨了在MATLAB/SimuLink环境中进行三相STATCOM(静态同步补偿器)无功补偿的技术方法及其仿真过程。首先介绍了STATCOM作为无功功率补偿装置的工作原理,即通过调节交流电压的幅值和相位来实现对无功功率的有效管理。接着详细描述了在MATLAB/SimuLink平台下构建三相STATCOM仿真模型的具体步骤,包括创建新模型、添加电源和负载、搭建主电路、加入控制模块以及完成整个电路的连接。然后阐述了如何通过对STATCOM输出电压和电流的精确调控达到无功补偿的目的,并展示了具体的仿真结果分析方法,如读取仿真数据、提取关键参数、绘制无功功率变化曲线等。最后指出,这种技术可以显著提升电力系统的稳定性与电能质量,展望了STATCOM在未来的发展潜力。 适合人群:电气工程专业学生、从事电力系统相关工作的技术人员、希望深入了解无功补偿技术的研究人员。 使用场景及目标:适用于想要掌握MATLAB/SimuLink软件操作技能的人群,特别是那些专注于电力电子领域的从业者;旨在帮助他们学会建立复杂的电力系统仿真模型,以便更好地理解STATCOM的工作机制,进而优化实际项目中的无功补偿方案。 其他说明:文中提供的实例代码可以帮助读者直观地了解如何从零开始构建一个完整的三相STATCOM仿真环境,并通过图形化的方式展示无功补偿的效果,便于进一步的学习与研究。
对于动态规划算法在C语言中的应用,我可以给你一些基本的活动安排问题的示例代码。活动安排问题是动态规划中常见的经典问题之一,其目标是在一组活动中选择最多的相互兼容的活动。以下是一个使用动态规划解决活动安排问题的C语言示例: ```c #include <stdio.h> #include <stdlib.h> // 结构体表示活动 typedef struct { int start; int finish; } Activity; // 比较函数,按照结束时间递增排序 int compare(const void* a, const void* b) { return ((Activity*)a)->finish - ((Activity*)b)->finish; } // 动态规划函数 void activitySelection(Activity activities[], int n) { // 按结束时间排序 qsort(activities, n, sizeof(Activity), compare); int i, j; int* dp = (int*)malloc(n * sizeof(int)); dp[0] = 1; for (i = 1; i < n; i++) { dp[i] = 1; for (j = 0; j < i; j++) { if (activities[j].finish <= activities[i].start) { dp[i] = (dp[i] > dp[j] + 1) ? dp[i] : dp[j] + 1; } } } // 打印最大兼容活动数量 printf("最大兼容活动数量:%d\n", dp[n - 1]); free(dp); } int main() { // 示例活动数据 Activity activities[] = {{1, 2}, {3, 4}, {0, 6}, {5, 7}, {8, 9}, {5, 9}}; int n = sizeof(activities) / sizeof(activities[0]); activitySelection(activities, n); return 0; } ``` 这段代码使用动态规划的思想解决了活动安排问题。它首先将活动按照结束时间递增排序,然后使用动态规划数组`dp`记录每个位置上的最大兼容活动数量。最后,打印出最大兼容活动数量。 希望这个示例能帮助你理解在C语言中如何应用动态规划算法解决活动安排问题。如果有任何疑问,请随时提问!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值