量化神经网络的有效部署

本文探讨了深度学习模型在资源有限的环境下的部署问题,提出了量化技术作为解决方案。量化将模型中的32位浮点数转换为8位整数,减少了内存占用并保持了模型精度。然而,量化模型的广泛应用面临多框架、多量化方法和多硬件平台的挑战。为了解决这些问题,文章介绍了QNN(量化神经网络)方法,这是一种基于TVM编译器的图形级方言,能够处理不同框架和量化方法,支持多种硬件平台。QNN通过算子解析、图级优化和整数算子调度实现预量化模型的高效执行,降低了开发者的工作负担,提升了模型在不同硬件上的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

越来越多的现实应用使用深度学习模型实现预测功能,这需要大量计算和内存的使用。如此规模的资源的耗费常常会给强大的服务器带来负担,更不用说低功耗的边缘设备了。如何合理使用资源以达到高效计算成为了热点问题。不同的技术方法(从算法,软件,硬件考虑)得到发展来减少实际问题中模型的计算和内存消耗,进而方便模型的开发和部署。目前来看,这些技术中量化是一个广泛被研究且有前景的方法,量化是将深度学习模型中的普遍使用的 32 位浮点数 转化为 8 位整数 进行存储,直观上能将内存占用减少 4 倍。除了更少的计算和内存资源的占用,量化的另外一个特点是保证了模型准确率与非量化模型相比不会有大的波动。这两个优点使得 量化在实际应用中已经被大量采用,许多硬件平台(如 Intel CPUS,Nvidia GPUS,ARM CPUS)纷纷引入了低精度指令来支持 数据类型的计算。现有的工作主要集中在探索新的量化方法来更好的使量化模型保持精度。在模型推理问题中,除了保持精度,降低推理时延也是一项重要衡量指标。量化技术相关的另一项研究被提出,关于如何广泛部署和高效执行这些量化后的模型,即如何将不同深度学习框架下的预量化模型执行在异构的硬件平台上。

挑战

上面讲述了量化的优点,那么量化模型的使用是否拿来就能用呢?当时不是。对于深度学习框架,量化模型的应用受限于 kernel 库的依赖,其他算子的相互作用以及不同硬件平台的适配;对于深度学习编译器,绝大部分是基于 类型的,尽管一些编译器支持量化运算符的生成和优化,但没有一个专注于编译和执行预量化模型。那么如何构建这样一种机制来使得开发者可以容易且快速地使用量化后的模型呢?主要存在如下挑战:

  • 多框架结构:当下主流的深度学习框架有 TensorFlow, TFLite, MXNet, 和PyTorch,所以需要提出的方法可以处理不同框架下的神经网络模型。

  • 多量化方法:不同的量化方法有均匀量化(使用最多),对称量化,非对称量化,per-channel量化等等,不同的方法在不同的问题带来不同的结果。所以提出的方法需要包含所有的这些方法。

  • 多硬件平台:提出的方法需要可以将预量化模型运行在大量的异构设备上,并且支持使用快速整数指令,例如 Intel VNNI 或 Nvidia DP4A 指令。

表 1 展示了当下不同框架受限的硬件支持和量化方法支持。

Tab 1 深度学习框架对量化方法与设备的支持现状

方法

尽管流行的深度学习框架不能解决上述挑战,但 DL 编译器提供了可能性。深度学习编译器拥有框架无关的图级别的 IR(中间表示),可以将任何由任何框架编写的模型转化到这个 IR,而不同的量化方法可自然在编译器中得到使用,最后编译器依赖 LLVM 和 NVCC 等成熟的代码生成器来覆盖广泛的硬件平台,于是三个问题可迎刃而解。由于编译器原本是被设计来编译 模型的,并不支持量化算子和相关优化,而直接增加算子需要在图级别和 tensor 级别整个工具链进行更新支持,这些工作是繁琐且耗时的,这便引发一个新的问题,如何让开发者可以快速简易的的将量化之后的模型应用在不同的硬件平台上。

通过观察发现,量化算子的计算可以很容易地表示为一系列更简单的、熟悉的算子。尽管这些分解会造成初始计算图的体积增大,但现存编译器在图级别和算子级别的优化方案可直接借鉴。开发者要做的工作只需要关注不同设备上所要求的数据类型(如:intel:int8;armv8:int16),余下的优化操作都留给编

### 神经网络模型量化部署方法及代码实现 #### 方法概述 神经网络模型量化是一种减少模型大小并加速推理的技术,其核心在于将浮点数权重转换为低比特整数表示。这种方法不仅能够显著降低内存占用和计算成本,还能提高硬件上的运行速度[^2]。 常见的量化方式分为两种: 1. **Post-training Quantization (PTQ)**:无需重新训练即可完成量化过程,适用于已经训练好的模型。此方法通常会引入一定的精度损失。 2. **Quantization-aware Training (QAT)**:在训练过程中模拟量化操作,从而使得最终的量化模型能够在保持高精度的同时获得性能提升。 以下是基于 TensorFlow 的 Post-training Quantization 和 Quantization-aware Training 实现示例: --- #### 代码实现 ##### 使用 TensorFlow 进行 Post-training Quantization ```python import tensorflow as tf # 加载预训练模型 model = tf.keras.models.load_model('path_to_your_model.h5') # 转换为 TFLite 模型(默认全精度) converter = tf.lite.TFLiteConverter.from_keras_model(model) # 启用动态范围量化 converter.optimizations = [tf.lite.Optimize.DEFAULT] # 如果有校准数据集,则提供代表性的输入样本 def representative_dataset(): for _ in range(100): # 假设有 100 条代表性数据 yield [tf.random.normal([1, *input_shape])] converter.representative_dataset = representative_dataset converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] converter.inference_input_type = tf.int8 # 输入类型设置为 int8 converter.inference_output_type = tf.int8 # 输出类型设置为 int8 tflite_quant_model = converter.convert() # 保存量化后的模型 with open('quantized_model.tflite', 'wb') as f: f.write(tflite_quant_model) ``` 上述代码实现了动态范围量化,并通过 `representative_dataset` 提供了校准数据来进一步优化量化效果[^3]。 --- ##### 使用 TensorFlow 进行 Quantization-aware Training ```python import tensorflow as tf from tensorflow.model_optimization import sparsity from tensorflow_model_optimization.sparsity import keras as sparsity # 构建基础模型 base_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape), tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), tf.keras.layers.Flatten(), tf.keras.layers.Dense(num_classes, activation='softmax') ]) # 应用 QAT 配置 q_aware_model = tfmot.quantization.keras.quantize_model(base_model) # 编译模型 q_aware_model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) # 训练带量化的模型 train_images_subset = train_images[:1000] # 小规模子集用于演示 train_labels_subset = train_labels[:1000] q_aware_model.fit(train_images_subset, train_labels_subset, batch_size=500, epochs=4, validation_split=0.1) # 导出量化模型 converter = tf.lite.TFLiteConverter.from_keras_model(q_aware_model) converter.optimizations = [tf.lite.Optimize.DEFAULT] tflite_qat_model = converter.convert() # 保存量化感知训练后的模型 with open('qat_quantized_model.tflite', 'wb') as f: f.write(tflite_qat_model) ``` 这段代码展示了如何利用 TensorFlow Model Optimization Toolkit 对模型进行量化感知训练,从而更好地适应目标硬件环境[^1]。 --- #### 关键注意事项 - 在 PTQ 中,选择合适的校准数据集至关重要,因为它直接影响到量化后模型的质量。 - QAT 虽然能有效缓解精度损失问题,但需要额外的时间来进行再训练。 - 不同的目标平台可能支持不同类型的量化方案(如 INT8 或 FP16),因此需根据具体需求调整配置[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Linux基金会AI&Data基金会

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值