求解多目标优化问题的粒子群优化(PSO)算法(MATLAB源代码)

代码

%% 该函数演示多目标perota优化问题
%清空环境
clc
clear

load data


%% 初始参数
objnum=size(P,1); %类中物品个数
weight=92;        %总重量限制

%初始化程序
Dim=5;     %粒子维数
xSize=50;  %种群个数
MaxIt=200; %迭代次数
c1=0.8;    %算法参数
c2=0.8;    %算法参数 
wmax=1.2;  %惯性因子
wmin=0.1;  %惯性因子

x=unidrnd(4,xSize,Dim);  %粒子初始化
v=zeros(xSize,Dim);      %速度初始化

xbest=x;           %个体最佳值
gbest=x(1,:);      %粒子群最佳位置

% 粒子适应度值 
px=zeros(1,xSize);   %粒子价值目标
rx=zeros(1,xSize);   %粒子体积目标
cx=zeros(1,xSize);   %重量约束

% 最优值初始化
pxbest=zeros(1,xSize); %粒子最优价值目标
rxbest=zeros(1,xSize); %粒子最优体积目标
cxbest=zeros(1,xSize);  %记录重量,以求约束

% 上一次的值
pxPrior=zeros(1,xSize);%粒子价值目标
rxPrior=zeros(1,xSize);%粒子体积目标
cxPrior=zeros(1,xSize);%记录重量,以求约束

%计算初始目标向量
for i=1:xSize
    for j=1:Dim %控制类别
        px(i) = px(i)+P(x(i,j),j);  %粒子价值
        rx(i) = rx(i)+R(x(i,j),j);  %粒子体积
        cx(i) = cx(i)+C(x(i,j),j);  %粒子重量
    end
end
% 粒子最优位置
pxbest=px;
rxbest=rx;
cxbest=cx;

%% 初始筛选非劣解
flj=[];
fljx=[];
fljNum=0;
%两个实数相等精度
tol=1e-7;
for i=1:xSize
    flag=0;  %支配标志
    for j=1:xSize  
        if j~=i
            if ((px(i)<px(j)) &&  (rx(i)>rx(j))) ||((abs(px(i)-px(j))<tol)...
                    &&  (rx(i)>rx(j)))||((px(i)<px(j)) &&  (abs(rx(i)-rx(j))<tol)) || (cx(i)>weight) 
                flag=1;
                break;
            end
        end
    end
    
    %判断有无被支配
    if flag==0
        fljNum=fljNum+1;
        % 记录非劣解
        flj(fljNum,1)=px(i);
        flj(fljNum,2)=rx(i);
        flj(fljNum,3)=cx(i);
        % 非劣解位置
        fljx(fljNum,:)=x(i,:); 
    end
end

%% 循环迭代
for iter=1:MaxIt
    
    % 权值更新
    w=wmax-(wmax-wmin)*iter/MaxIt;
     
    %从非劣解中选择粒子作为全局最优解
    s=size(fljx,1);       
    index=randi(s,1,1);  
    gbest=fljx(index,:);

    %% 群体更新
    for i=1:xSize
        %速度更新
        v(i,:)=w*v(i,:)+c1*rand(1,1)*(xbest(i,:)-x(i,:))+c2*rand(1,1)*(gbest-x(i,:));
        
        %位置更新
        x(i,:)=x(i,:)+v(i,:);
        x(i,:) = rem(x(i,:),objnum)/double(objnum);
        index1=find(x(i,:)<=0);
        if ~isempty(index1)
            x(i,index1)=rand(size(index1));
        end
        x(i,:)=ceil(4*x(i,:));        
    end
    
    %% 计算个体适应度
    pxPrior(:)=0;
    rxPrior(:)=0;
    cxPrior(:)=0;
    for i=1:xSize
        for j=1:Dim %控制类别
            pxPrior(i) = pxPrior(i)+P(x(i,j),j);  %计算粒子i 价值
            rxPrior(i) = rxPrior(i)+R(x(i,j),j);  %计算粒子i 体积
            cxPrior(i) = cxPrior(i)+C(x(i,j),j);  %计算粒子i 重量
        end
    end
    
    %% 更新粒子历史最佳
    for i=1:xSize
        %现在的支配原有的,替代原有的
         if ((px(i)<pxPrior(i)) &&  (rx(i)>rxPrior(i))) ||((abs(px(i)-pxPrior(i))<tol)...
                 &&  (rx(i)>rxPrior(i)))||((px(i)<pxPrior(i)) &&  (abs(rx(i)-rxPrior(i))<tol)) || (cx(i)>weight) 
                xbest(i,:)=x(i,:);%没有记录目标值
                pxbest(i)=pxPrior(i);
                rxbest(i)=rxPrior(i);
                cxbest(i)=cxPrior(i);
          end
        
        %彼此不受支配,随机决定
        if ~( ((px(i)<pxPrior(i)) &&  (rx(i)>rxPrior(i))) ||((abs(px(i)-pxPrior(i))<tol)...
                &&  (rx(i)>rxPrior(i)))||((px(i)<pxPrior(i)) &&  (abs(rx(i)-rxPrior(i))<tol)) || (cx(i)>weight) )...
                &&  ~( ((pxPrior(i)<px(i)) &&  (rxPrior(i)>rx(i))) ||((abs(pxPrior(i)-px(i))<tol) &&  (rxPrior(i)>rx(i)))...
                ||((pxPrior(i)<px(i)) &&  (abs(rxPrior(i)-rx(i))<tol)) || (cxPrior(i)>weight) )
            if rand(1,1)<0.5
                xbest(i,:)=x(i,:);
                  pxbest(i)=pxPrior(i);
                  rxbest(i)=rxPrior(i);
                  cxbest(i)=cxPrior(i);
            end
        end
    end

    %% 更新非劣解集合
    px=pxPrior;
    rx=rxPrior;
    cx=cxPrior;
    %更新升级非劣解集合
    s=size(flj,1);%目前非劣解集合中元素个数
   
    %先将非劣解集合和xbest合并
    pppx=zeros(1,s+xSize);
    rrrx=zeros(1,s+xSize);
    cccx=zeros(1,s+xSize);
    pppx(1:xSize)=pxbest;
    pppx(xSize+1:end)=flj(:,1)';
    rrrx(1:xSize)=rxbest;
    rrrx(xSize+1:end)=flj(:,2)';
    cccx(1:xSize)=cxbest;
    cccx(xSize+1:end)=flj(:,3)';
    xxbest=zeros(s+xSize,Dim);
    xxbest(1:xSize,:)=xbest;
    xxbest(xSize+1:end,:)=fljx;
   
    %筛选非劣解
    flj=[];
    fljx=[];
    k=0;
    tol=1e-7;
    for i=1:xSize+s
        flag=0;%没有被支配
        %判断该点是否非劣
        for j=1:xSize+s 
            if j~=i
                if ((pppx(i)<pppx(j)) &&  (rrrx(i)>rrrx(j))) ||((abs(pppx(i)-pppx(j))<tol) ...
                        &&  (rrrx(i)>rrrx(j)))||((pppx(i)<pppx(j)) &&  (abs(rrrx(i)-rrrx(j))<tol)) ...
                        || (cccx(i)>weight) %有一次被支配
                    flag=1;
                    break;
                end
            end
        end

        %判断有无被支配
        if flag==0
            k=k+1;
            flj(k,1)=pppx(i);
            flj(k,2)=rrrx(i);
            flj(k,3)=cccx(i);%记录非劣解
            fljx(k,:)=xxbest(i,:);%非劣解位置
        end
    end
    
    %去掉重复粒子
    repflag=0;   %重复标志
    k=1;         %不同非劣解粒子数
    flj2=[];     %存储不同非劣解
    fljx2=[];    %存储不同非劣解粒子位置
    flj2(k,:)=flj(1,:);
    fljx2(k,:)=fljx(1,:);
    for j=2:size(flj,1)
        repflag=0;  %重复标志
        for i=1:size(flj2,1)
            result=(fljx(j,:)==fljx2(i,:));
            if length(find(result==1))==Dim
                repflag=1;%有重复
            end
        end
        %粒子不同,存储
        if repflag==0 
            k=k+1;
            flj2(k,:)=flj(j,:);
            fljx2(k,:)=fljx(j,:);
        end
        
    end
    
    %非劣解更新
    flj=flj2;
    fljx=fljx2;

end

%绘制非劣解分布
plot(flj(:,1),flj(:,2),'o') 
xlabel('P')
ylabel('R')
title('最终非劣解在目标空间分布')
disp('非劣解flj中三列依次为P,R,C')

这段代码实现了一个用于求解多目标优化问题的粒子群优化(PSO)算法。它的目标是优化物品的选择,使其在一定的重量限制下,最大化价值(P)和体积(R)。以下是代码的分步解释:


代码功能

  • 输入
    • PRC:物品的价值、体积、重量矩阵,从 data 文件中加载。
  • 输出
    • 非劣解集:一个 Pareto 前沿解集,用于表示优化后的物品选择。

代码结构

1. 初始化
  • 目标数量和约束
    • objnum: 物品类别数。
    • weight: 总重量限制。
  • 算法参数
    • Dim: 粒子维数,表示选择的物品种类数。
    • xSize: 粒子群规模。
    • MaxIt: 最大迭代次数。
    • c1c2wmaxwmin: 控制粒子更新的速度和权值参数。
  • 粒子初始化
    • x: 随机初始化粒子的选择,每个粒子是一个二维数组,表示选择的物品。
    • v: 粒子速度矩阵,初始为零。

2. 适应度计算
  • 目标向量
    • 计算每个粒子的目标函数值:
      • px: 粒子的价值总和。
      • rx: 粒子的体积总和。
      • cx: 粒子的重量总和。
  • 非劣解初筛
    • 判断粒子是否被其他粒子支配,筛选出初始非劣解(Pareto 解)。

3. 迭代优化

每次迭代更新包括以下步骤

  • 更新权值:根据当前迭代次数动态调整权值 w
  • 选择全局最优解
    • 从当前的非劣解集中随机选取一个作为全局最优解 gbest
  • 粒子更新
    • 更新速度和位置,并根据物品类别约束修正位置。
  • 适应度计算和比较
    • 比较粒子当前解与历史最优解,按支配关系更新个体最优位置 xbest
  • 非劣解更新
    • 将当前所有粒子与非劣解集合合并,再次筛选 Pareto 前沿解。
    • 去除重复解,更新非劣解集合。

4. 结果输出
  • Pareto 解可视化
    • 绘制最终非劣解集在目标空间中的分布。
  • 数据说明
    • 输出 flj,其中三列分别表示价值(P)、体积(R)、重量(C)。

关键概念

  1. Pareto 支配

    • 若解 A 的某些目标值比解 B 更优,且其他目标值不劣于 B,则 A 支配 B。
    • 非劣解是未被任何其他解支配的解。
  2. 粒子群优化(PSO)

    • PSO 是一种基于群体智能的优化算法,粒子更新依据自身历史最佳位置和群体全局最佳位置。

注意事项

  1. 代码的约束处理
    • 通过判断重量(cx > weight)筛除不符合约束的解。
  2. 随机因素
    • 粒子更新、全局最优解选择等环节引入随机性,可能导致结果不稳定。
  3. 效率问题
    • 非劣解筛选和去重步骤耗时较长,尤其是粒子规模较大时。

改进建议

  1. 加速非劣解筛选
    • 使用快速非支配排序算法(Fast Non-Dominated Sorting)提高效率。
  2. 收敛性分析
    • 记录迭代中非劣解集的变化,分析算法的收敛性和稳定性。
  3. 多次运行对比
    • 多次运行算法,评估解的稳定性和均匀性。

希望这段解析帮助你理解这段代码的实现!

运行结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值