代码
%% 该函数演示多目标perota优化问题
%清空环境
clc
clear
load data
%% 初始参数
objnum=size(P,1); %类中物品个数
weight=92; %总重量限制
%初始化程序
Dim=5; %粒子维数
xSize=50; %种群个数
MaxIt=200; %迭代次数
c1=0.8; %算法参数
c2=0.8; %算法参数
wmax=1.2; %惯性因子
wmin=0.1; %惯性因子
x=unidrnd(4,xSize,Dim); %粒子初始化
v=zeros(xSize,Dim); %速度初始化
xbest=x; %个体最佳值
gbest=x(1,:); %粒子群最佳位置
% 粒子适应度值
px=zeros(1,xSize); %粒子价值目标
rx=zeros(1,xSize); %粒子体积目标
cx=zeros(1,xSize); %重量约束
% 最优值初始化
pxbest=zeros(1,xSize); %粒子最优价值目标
rxbest=zeros(1,xSize); %粒子最优体积目标
cxbest=zeros(1,xSize); %记录重量,以求约束
% 上一次的值
pxPrior=zeros(1,xSize);%粒子价值目标
rxPrior=zeros(1,xSize);%粒子体积目标
cxPrior=zeros(1,xSize);%记录重量,以求约束
%计算初始目标向量
for i=1:xSize
for j=1:Dim %控制类别
px(i) = px(i)+P(x(i,j),j); %粒子价值
rx(i) = rx(i)+R(x(i,j),j); %粒子体积
cx(i) = cx(i)+C(x(i,j),j); %粒子重量
end
end
% 粒子最优位置
pxbest=px;
rxbest=rx;
cxbest=cx;
%% 初始筛选非劣解
flj=[];
fljx=[];
fljNum=0;
%两个实数相等精度
tol=1e-7;
for i=1:xSize
flag=0; %支配标志
for j=1:xSize
if j~=i
if ((px(i)<px(j)) && (rx(i)>rx(j))) ||((abs(px(i)-px(j))<tol)...
&& (rx(i)>rx(j)))||((px(i)<px(j)) && (abs(rx(i)-rx(j))<tol)) || (cx(i)>weight)
flag=1;
break;
end
end
end
%判断有无被支配
if flag==0
fljNum=fljNum+1;
% 记录非劣解
flj(fljNum,1)=px(i);
flj(fljNum,2)=rx(i);
flj(fljNum,3)=cx(i);
% 非劣解位置
fljx(fljNum,:)=x(i,:);
end
end
%% 循环迭代
for iter=1:MaxIt
% 权值更新
w=wmax-(wmax-wmin)*iter/MaxIt;
%从非劣解中选择粒子作为全局最优解
s=size(fljx,1);
index=randi(s,1,1);
gbest=fljx(index,:);
%% 群体更新
for i=1:xSize
%速度更新
v(i,:)=w*v(i,:)+c1*rand(1,1)*(xbest(i,:)-x(i,:))+c2*rand(1,1)*(gbest-x(i,:));
%位置更新
x(i,:)=x(i,:)+v(i,:);
x(i,:) = rem(x(i,:),objnum)/double(objnum);
index1=find(x(i,:)<=0);
if ~isempty(index1)
x(i,index1)=rand(size(index1));
end
x(i,:)=ceil(4*x(i,:));
end
%% 计算个体适应度
pxPrior(:)=0;
rxPrior(:)=0;
cxPrior(:)=0;
for i=1:xSize
for j=1:Dim %控制类别
pxPrior(i) = pxPrior(i)+P(x(i,j),j); %计算粒子i 价值
rxPrior(i) = rxPrior(i)+R(x(i,j),j); %计算粒子i 体积
cxPrior(i) = cxPrior(i)+C(x(i,j),j); %计算粒子i 重量
end
end
%% 更新粒子历史最佳
for i=1:xSize
%现在的支配原有的,替代原有的
if ((px(i)<pxPrior(i)) && (rx(i)>rxPrior(i))) ||((abs(px(i)-pxPrior(i))<tol)...
&& (rx(i)>rxPrior(i)))||((px(i)<pxPrior(i)) && (abs(rx(i)-rxPrior(i))<tol)) || (cx(i)>weight)
xbest(i,:)=x(i,:);%没有记录目标值
pxbest(i)=pxPrior(i);
rxbest(i)=rxPrior(i);
cxbest(i)=cxPrior(i);
end
%彼此不受支配,随机决定
if ~( ((px(i)<pxPrior(i)) && (rx(i)>rxPrior(i))) ||((abs(px(i)-pxPrior(i))<tol)...
&& (rx(i)>rxPrior(i)))||((px(i)<pxPrior(i)) && (abs(rx(i)-rxPrior(i))<tol)) || (cx(i)>weight) )...
&& ~( ((pxPrior(i)<px(i)) && (rxPrior(i)>rx(i))) ||((abs(pxPrior(i)-px(i))<tol) && (rxPrior(i)>rx(i)))...
||((pxPrior(i)<px(i)) && (abs(rxPrior(i)-rx(i))<tol)) || (cxPrior(i)>weight) )
if rand(1,1)<0.5
xbest(i,:)=x(i,:);
pxbest(i)=pxPrior(i);
rxbest(i)=rxPrior(i);
cxbest(i)=cxPrior(i);
end
end
end
%% 更新非劣解集合
px=pxPrior;
rx=rxPrior;
cx=cxPrior;
%更新升级非劣解集合
s=size(flj,1);%目前非劣解集合中元素个数
%先将非劣解集合和xbest合并
pppx=zeros(1,s+xSize);
rrrx=zeros(1,s+xSize);
cccx=zeros(1,s+xSize);
pppx(1:xSize)=pxbest;
pppx(xSize+1:end)=flj(:,1)';
rrrx(1:xSize)=rxbest;
rrrx(xSize+1:end)=flj(:,2)';
cccx(1:xSize)=cxbest;
cccx(xSize+1:end)=flj(:,3)';
xxbest=zeros(s+xSize,Dim);
xxbest(1:xSize,:)=xbest;
xxbest(xSize+1:end,:)=fljx;
%筛选非劣解
flj=[];
fljx=[];
k=0;
tol=1e-7;
for i=1:xSize+s
flag=0;%没有被支配
%判断该点是否非劣
for j=1:xSize+s
if j~=i
if ((pppx(i)<pppx(j)) && (rrrx(i)>rrrx(j))) ||((abs(pppx(i)-pppx(j))<tol) ...
&& (rrrx(i)>rrrx(j)))||((pppx(i)<pppx(j)) && (abs(rrrx(i)-rrrx(j))<tol)) ...
|| (cccx(i)>weight) %有一次被支配
flag=1;
break;
end
end
end
%判断有无被支配
if flag==0
k=k+1;
flj(k,1)=pppx(i);
flj(k,2)=rrrx(i);
flj(k,3)=cccx(i);%记录非劣解
fljx(k,:)=xxbest(i,:);%非劣解位置
end
end
%去掉重复粒子
repflag=0; %重复标志
k=1; %不同非劣解粒子数
flj2=[]; %存储不同非劣解
fljx2=[]; %存储不同非劣解粒子位置
flj2(k,:)=flj(1,:);
fljx2(k,:)=fljx(1,:);
for j=2:size(flj,1)
repflag=0; %重复标志
for i=1:size(flj2,1)
result=(fljx(j,:)==fljx2(i,:));
if length(find(result==1))==Dim
repflag=1;%有重复
end
end
%粒子不同,存储
if repflag==0
k=k+1;
flj2(k,:)=flj(j,:);
fljx2(k,:)=fljx(j,:);
end
end
%非劣解更新
flj=flj2;
fljx=fljx2;
end
%绘制非劣解分布
plot(flj(:,1),flj(:,2),'o')
xlabel('P')
ylabel('R')
title('最终非劣解在目标空间分布')
disp('非劣解flj中三列依次为P,R,C')
这段代码实现了一个用于求解多目标优化问题的粒子群优化(PSO)算法。它的目标是优化物品的选择,使其在一定的重量限制下,最大化价值(P
)和体积(R
)。以下是代码的分步解释:
代码功能
- 输入:
P
、R
和C
:物品的价值、体积、重量矩阵,从data
文件中加载。
- 输出:
- 非劣解集:一个 Pareto 前沿解集,用于表示优化后的物品选择。
代码结构
1. 初始化
- 目标数量和约束:
objnum
: 物品类别数。weight
: 总重量限制。
- 算法参数:
Dim
: 粒子维数,表示选择的物品种类数。xSize
: 粒子群规模。MaxIt
: 最大迭代次数。c1
、c2
、wmax
、wmin
: 控制粒子更新的速度和权值参数。
- 粒子初始化:
x
: 随机初始化粒子的选择,每个粒子是一个二维数组,表示选择的物品。v
: 粒子速度矩阵,初始为零。
2. 适应度计算
- 目标向量:
- 计算每个粒子的目标函数值:
px
: 粒子的价值总和。rx
: 粒子的体积总和。cx
: 粒子的重量总和。
- 计算每个粒子的目标函数值:
- 非劣解初筛:
- 判断粒子是否被其他粒子支配,筛选出初始非劣解(Pareto 解)。
3. 迭代优化
每次迭代更新包括以下步骤:
- 更新权值:根据当前迭代次数动态调整权值
w
。 - 选择全局最优解:
- 从当前的非劣解集中随机选取一个作为全局最优解
gbest
。
- 从当前的非劣解集中随机选取一个作为全局最优解
- 粒子更新:
- 更新速度和位置,并根据物品类别约束修正位置。
- 适应度计算和比较:
- 比较粒子当前解与历史最优解,按支配关系更新个体最优位置
xbest
。
- 比较粒子当前解与历史最优解,按支配关系更新个体最优位置
- 非劣解更新:
- 将当前所有粒子与非劣解集合合并,再次筛选 Pareto 前沿解。
- 去除重复解,更新非劣解集合。
4. 结果输出
- Pareto 解可视化:
- 绘制最终非劣解集在目标空间中的分布。
- 数据说明:
- 输出
flj
,其中三列分别表示价值(P
)、体积(R
)、重量(C
)。
- 输出
关键概念
-
Pareto 支配:
- 若解 A 的某些目标值比解 B 更优,且其他目标值不劣于 B,则 A 支配 B。
- 非劣解是未被任何其他解支配的解。
-
粒子群优化(PSO):
- PSO 是一种基于群体智能的优化算法,粒子更新依据自身历史最佳位置和群体全局最佳位置。
注意事项
- 代码的约束处理:
- 通过判断重量(
cx > weight
)筛除不符合约束的解。
- 通过判断重量(
- 随机因素:
- 粒子更新、全局最优解选择等环节引入随机性,可能导致结果不稳定。
- 效率问题:
- 非劣解筛选和去重步骤耗时较长,尤其是粒子规模较大时。
改进建议
- 加速非劣解筛选:
- 使用快速非支配排序算法(Fast Non-Dominated Sorting)提高效率。
- 收敛性分析:
- 记录迭代中非劣解集的变化,分析算法的收敛性和稳定性。
- 多次运行对比:
- 多次运行算法,评估解的稳定性和均匀性。
希望这段解析帮助你理解这段代码的实现!
运行结果