在pycharm上使用YOLOv11(附代码讲解)

配置好python环境后,就可以使用YOLOv11了

1. 打开GitHub,下载源码

GitHub - ultralytics/ultralytics: Ultralytics YOLO11 🚀

2. 使用pycharm打开ultralytics项目

 新建一个train.py文件

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO
if __name__ == '__main__':
  model = YOLO('E:\\YOLOv11\\cfg\\models\\11\\yolo11n.yaml')
  model.load('E:\\ultralytics\\yolo11n.pt') #注释则不加载
  results = model.train(
    data='E:\\YOLO\\dataset\\road crack.v1i.yolov11\\data.yaml',  #数据集配置文件的路径
    epochs=200,  #训练轮次总数
    batch=16,  #批量大小,即单次输入多少图片训练
    imgsz=640,  #训练图像尺寸
    workers=8,  #加载数据的工作线程数
    device= 0,  #指定训练的计算设备,无nvidia显卡则改为 'cpu'
    optimizer='SGD',  #训练使用优化器,可选 auto,SGD,Adam,AdamW 等
    amp= True,  #True 或者 False, 解释为:自动混合精度(AMP) 训练
    cache=False  # True 在内存中缓存数据集图像,服务器推荐开启
)
  • YOLO('yolo11n.yaml')​:
    • 从 yolo11n.yaml 加载模型架构(定义网络结构)。
    • 如果只提供 .yaml,则从头开始训练(随机初始化权重)。
  • model.load('yolo11n.pt')​:
    • 加载预训练权重(.pt 文件),用于​​迁移学习​​(微调已有模型)。
    • 如果注释掉这行,则完全从头训练。

上面这两个文件是源码自带的,只需要在按地址寻找

而data.yaml 文件需要自己写

train: E:\RoadCrack.v2i.yolov11\train\images  # train images (relative to 'path') 128 images
val: E:\RoadCrack.v2i.yolov11\valid\images  # val images (relative to 'path') 128 images
test: E:\RoadCrack.v2i.yolov11\test\images

nc: 1 #数据集的类别数量

# Classes
names: ['crack']

train:训练集图片的存放地址

val:验证集图片的存放地址

test:测试集图片的存放地址

nc:标签数量

names:标签名称

    ————————————————————————————————————

    运行train.py,训练完成后,模型权重默认保存在 runs/train/exp/weights/best.pt

    3. 结果查看

    创建predict.py文件

    from ultralytics import YOLO
    # 加载训练好的模型,改为自己的路径
    model = YOLO('runs\\detect\\train11\\weights\\best.pt')  #修改为训练好的路径
    source = 'E:\\target_detection\\RoadCrack.v2i.yolov11\\test\\images\\26_jpg.rf.3a6c38a6ddf86acd619d02ea7ea1d0da.jpg' #修改为自己的图片路径及文件名
    # 运行推理,并附加参数
    model.predict(source, save=True)

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值