题目
请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push
、pop
、peek
、empty
):
实现 MyQueue
类:
- void push(int x) 将元素 x 推到队列的末尾
- int pop() 从队列的开头移除并返回元素
- int peek() 返回队列开头的元素
- boolean empty() 如果队列为空,返回 true ;否则,返回 false
说明:
- 你只能使用标准的栈操作 —— 也就是只有 push to top, peek/pop from top, size, 和 is empty 操作是合法的。
- 你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。
** 示例:**
输入:
["MyQueue", "push", "push", "peek", "pop", "empty"]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 1, 1, false]
解释:
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false
官方题解
方法一:双栈
思路
将一个栈当作输入栈,用于压入 push
传入的数据;另一个栈当作输出栈,用于 pop
和 peek
操作。
每次 pop
或 peek
时,若输出栈为空则将输入栈的全部数据依次弹出并压入输出栈,这样输出栈从栈顶往栈底的顺序就是队列从队首往队尾的顺序。
class MyQueue {
Deque<Integer> inStack;
Deque<Integer> outStack;
public MyQueue() {
inStack = new LinkedList<Integer>();
outStack = new LinkedList<Integer>();
}
public void push(int x) {
inStack.push(x);
}
public int pop() {
if (outStack.isEmpty()) {
in2out();
}
return outStack.pop();
}
public int peek() {
if (outStack.isEmpty()) {
in2out();
}
return outStack.peek();
}
public boolean empty() {
return inStack.isEmpty() && outStack.isEmpty();
}
private void in2out() {
while (!inStack.isEmpty()) {
outStack.push(inStack.pop());
}
}
}
大佬解法
同样是双栈,方法比官方的要清晰一些。
基本思路
无论「用栈实现队列」还是「用队列实现栈」,思路都是类似的。
都可以通过使用两个栈 / 队列来解决。
我们创建两个栈,分别为 out
和 in
,用作处理「输出」和「输入」操作。
其实就是两个栈来回「倒腾」。
而对于「何时倒腾」决定了是 O(n) 解法 还是 均摊 O(1) 解法。
O(n) 解法
我们创建两个栈,分别为 out 和 in:
in
用作处理输入操作push()
,使用in
时需确保out
为空out
用作处理输出操作pop()
和peek()
,使用out
时需确保in
为空
class MyQueue {
Deque<Integer> out, in;
public MyQueue() {
in = new ArrayDeque<>();
out = new ArrayDeque<>();
}
public void push(int x) {
while (!out.isEmpty()) in.addLast(out.pollLast());
in.addLast(x);
}
public int pop() {
while (!in.isEmpty()) out.addLast(in.pollLast());
return out.pollLast();
}
public int peek() {
while (!in.isEmpty()) out.addLast(in.pollLast());
return out.peekLast();
}
public boolean empty() {
return out.isEmpty() && in.isEmpty();
}
}
均摊 O(1) 解法
事实上,我们不需要在每次的「入栈」和「出栈」操作中都进行「倒腾」。
我们只需要保证,输入的元素总是跟在前面的输入元素的后面,而输出元素总是最早输入的那个元素即可。
可以通过调整「倒腾」的时机来确保满足上述要求,但又不需要发生在每一次操作中:
- 只有在「输出栈」为空的时候,才发生一次性的「倒腾」
class MyQueue {
Deque<Integer> out, in;
public MyQueue() {
in = new ArrayDeque<>();
out = new ArrayDeque<>();
}
public void push(int x) {
in.addLast(x);
}
public int pop() {
if (out.isEmpty()) {
while (!in.isEmpty()) out.addLast(in.pollLast());
}
return out.pollLast();
}
public int peek() {
if (out.isEmpty()) {
while (!in.isEmpty()) out.addLast(in.pollLast());
}
return out.peekLast();
}
public boolean empty() {
return out.isEmpty() && in.isEmpty();
}
}