232. 用栈实现队列(简单题)

本文介绍了如何使用两个栈实现一个符合队列操作(push、pop、peek、empty)的MyQueue类。方法一是每次pop或peek时,如果输出栈为空,则将输入栈所有元素转移到输出栈;方法二是只在输出栈为空时进行转移,以达到均摊O(1)的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(pushpoppeekempty):

实现 MyQueue 类:

  • void push(int x) 将元素 x 推到队列的末尾
  • int pop() 从队列的开头移除并返回元素
  • int peek() 返回队列开头的元素
  • boolean empty() 如果队列为空,返回 true ;否则,返回 false

说明:

  • 你只能使用标准的栈操作 —— 也就是只有 push to top, peek/pop from top, size, 和 is empty 操作是合法的。
  • 你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可。

** 示例:**

输入:
["MyQueue", "push", "push", "peek", "pop", "empty"]
[[], [1], [2], [], [], []]
输出:
[null, null, null, 1, 1, false]

解释:
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false

官方题解

方法一:双栈

思路

将一个栈当作输入栈,用于压入 push 传入的数据;另一个栈当作输出栈,用于 poppeek 操作。

每次 poppeek 时,若输出栈为空则将输入栈的全部数据依次弹出并压入输出栈,这样输出栈从栈顶往栈底的顺序就是队列从队首往队尾的顺序。

class MyQueue {
    Deque<Integer> inStack;
    Deque<Integer> outStack;

    public MyQueue() {
        inStack = new LinkedList<Integer>();
        outStack = new LinkedList<Integer>();
    }
    
    public void push(int x) {
        inStack.push(x);
    }
    
    public int pop() {
        if (outStack.isEmpty()) {
            in2out();
        }
        return outStack.pop();
    }
    
    public int peek() {
        if (outStack.isEmpty()) {
            in2out();
        }
        return outStack.peek();
    }
    
    public boolean empty() {
        return inStack.isEmpty() && outStack.isEmpty();
    }

    private void in2out() {
        while (!inStack.isEmpty()) {
            outStack.push(inStack.pop());
        }
    }
}

在这里插入图片描述

大佬解法

同样是双栈,方法比官方的要清晰一些。

基本思路

无论「用栈实现队列」还是「用队列实现栈」,思路都是类似的。

都可以通过使用两个栈 / 队列来解决。

我们创建两个栈,分别为 outin,用作处理「输出」和「输入」操作。

其实就是两个栈来回「倒腾」。

而对于「何时倒腾」决定了是 O(n) 解法 还是 均摊 O(1) 解法。

O(n) 解法

我们创建两个栈,分别为 out 和 in:

  • in 用作处理输入操作 push(),使用 in 时需确保 out 为空
  • out 用作处理输出操作 pop()peek(),使用 out 时需确保 in 为空
class MyQueue {
    Deque<Integer> out, in;
    public MyQueue() {
        in = new ArrayDeque<>();
        out = new ArrayDeque<>();
    }
    
    public void push(int x) {
        while (!out.isEmpty()) in.addLast(out.pollLast());
        in.addLast(x);
    }
    
    public int pop() {
        while (!in.isEmpty()) out.addLast(in.pollLast());
        return out.pollLast();
    }
    
    public int peek() {
        while (!in.isEmpty()) out.addLast(in.pollLast());
        return out.peekLast();
    }
    
    public boolean empty() {
        return out.isEmpty() && in.isEmpty();
    }
}

在这里插入图片描述

均摊 O(1) 解法

事实上,我们不需要在每次的「入栈」和「出栈」操作中都进行「倒腾」。

我们只需要保证,输入的元素总是跟在前面的输入元素的后面,而输出元素总是最早输入的那个元素即可。

可以通过调整「倒腾」的时机来确保满足上述要求,但又不需要发生在每一次操作中:

  • 只有在「输出栈」为空的时候,才发生一次性的「倒腾」
class MyQueue {
    Deque<Integer> out, in;
    public MyQueue() {
        in = new ArrayDeque<>();
        out = new ArrayDeque<>();
    }
    
    public void push(int x) {
        in.addLast(x);
    }
    
    public int pop() {
        if (out.isEmpty()) {
            while (!in.isEmpty()) out.addLast(in.pollLast());
        }
        return out.pollLast();
    }
    
    public int peek() {
        if (out.isEmpty()) {
            while (!in.isEmpty()) out.addLast(in.pollLast());
        }
        return out.peekLast();
    }
    
    public boolean empty() {
        return out.isEmpty() && in.isEmpty();
    }
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值