Ubuntu18.04安装CUDA10.1和cuDNN v7.6.5

本文详细介绍了在Ubuntu18.04环境下安装CUDA10.1和cuDNNv7.6.5的过程,包括安装前的系统环境检查、CUDA的安装与配置、cuDNN的两种安装方法及测试,为深度学习开发提供全面的指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

深度学习需要使用使用GPU加速,在安装tensorflow之前需要根据选用的版本安装
就我的经验而言,CUDA的安装在Linux上比Windows10上的安装坑多了些。一开始使用Ubuntu18.04.4安装CUDA两次都失败了,查找原因是Ubuntu18.04.4内核不满足要求,因此在安装之前一定要首先查看官方的安装文档,不需要首先安装显卡驱动,安装CUDA时会自动安装一个NVIDIA的显卡驱动。

安装前准备

根据官方文档的介绍,在安装前检查操作系统环境。

  1. 验证GPU
$ lspci | grep -i nvidia
  1. 验证Linux版本信息
$ uname -m && cat /etc/*release
  1. 验证是否安装gcc编译器
$ gcc --version

如果没有安装,需要首先安装gcc
4. 验证系统内核

$ uname -r

安装CUDA

官方网站找到所需版本进行下载安装。
选择完成后,在官方页面中Base Installer栏中会显示安装的具体步骤。
这里也可以选择runfile安装方式,据说坑会少点。
cuda安装步骤
在第二步时,只需要将替换为自己的版本即可,或者在第一步完成后,最后会提示下一步安装命令,复制执行即可,接下来仍然按照Base Installer3、4步骤来就可以。

CUDA相关配置修改

安装完成后需要重启,才能使安装生效。
重启完成后,验证显卡驱动是否完成:

$ nvidia-smi

验证显卡安装
如果打印出显卡信息,表示安装成功。
然后验证CUDA是否安装成功。

$ nvcc -V

如果提示

Command 'nvcc' not find ,but can be installed with:
sudo apt install nvidia-cuda-toolkit

千万不要直接执行这个提示的命令,有可能只是没有将CUDA的编译器添加到环境变量中。
进入/usr/local中查看是否包含有cuda-10.1的目录:

$ cd /usr/local/
$ ls

查看cuda编译器是否安装成功
如存在cuda-10.1目录,进入此目录,运行nvcc查看cuda是否安装成功:

$ cd cuda-10.1
$ ls
$ ./bin/nvcc -V

打印如下信息表明安装成功
打印版本信息
最后将nvcc编译器添加到环境变量中:

$ vim ~/.bashrc

在其中添加:
修改PATH环境变量
使配置文件生效

$ source ~/.bashrc

安装cudnn

官方下载cudnn,下载cudnn需要注册账号,然后选择匹配CUDA版本的cudnn下载,有两种安装方式,下载黑色框文件使用tar方式安装,下载红色框使用deb方式安装,第二种方法包含测试用例。参考官方安装教程
下载cudnn

方法一

  1. 解压缩
$ tar -xzvf cudnn-10.1-linux-x64-v7.6.5.32.tgz #这里的安装包需要替换为自己下载的版本
  1. 复制文件
$ sudo cp cuda/include/cudnn*.h /usr/local/cuda/include
$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
  1. 修改文件权限
$ sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*
  1. 添加环境变量,打开配置文件:
$ vim ~/.bashrc

添加如下环境变量:

export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

使配置生效:

$ source ~/.bashrc

方法二及其包含的测试用例

  1. 安装运行时库:
$ sudo dpkg -i libcudnn7_7.6.5.32-1+cuda10.1_amd64.deb
  1. 安装开发者库:
$ sudo dpkg -i libcudnn8-dev_7.6.5.32-1+cuda10.1.deb
  1. 安装代码示例和cuDNN库文档:
$ sudo dpkg -i libcudnn8-doc_7.6.5.32-1+cuda10.1.deb
  1. 测试
$ cp -r /usr/src/cudnn_samples_v7/ $HOME
$ cd  $HOME/cudnn_samples_v7/mnistCUDNN
$ make clean && make
$ ./mnistCUDNN

如果cuDNN正确安装,将会打印出如下信息:

Test passed!

后记

没有安装经验的小伙伴,安装之前一定要多看一些安装教程,对过程有熟练的了解,再开始实际安装,enjoy coding.

<think>好的,我现在需要帮用户解决在Ubuntu 18.04安装CUDA 10.1cuDNN 7.6.5的问题。首先,我得回忆一下自己之前处理类似安装过程的经验,或者查看提供的引用资料。用户提供的引用有几个,其中引用[1]、[2]、[4]提到了使用deb包安装CUDA 10.1,而引用[3][4]提到了.run文件的安装方式。这可能意味着有两种不同的安装方法,需要确认哪种更适合Ubuntu 18.04。 首先,用户的问题是关于Ubuntu 18.04的,所以需要确保步骤适用于该版本。根据引用[1],使用deb方式安装CUDA的步骤包括用dpkg安装本地deb包,添加密钥,更新apt,然后安装cuda。而引用[4]则提到了使用.run文件安装,需要先给文件添加执行权限,然后以sudo运行。这两种方法都有可能,但根据不同的情况可能有不同的步骤。 需要确定用户是否更倾向于使用deb包还是.run文件安装。通常,使用deb包可能更方便,因为它可以通过apt管理后续的更新,而.run文件可能需要手动处理依赖。但有时候,特定版本的CUDA可能需要.run文件,尤其是在有旧版本或其他依赖冲突的情况下。 接下来,安装cuDNN的部分,引用[2][4]指出需要下载对应的cuDNN 7.6.5版本,并按照步骤安装。通常,安装cuDNN需要将下载的文件解压后复制到CUDA安装目录,并设置正确的权限。 此外,用户提供的引用中有提到环境变量的配置,如PATHLD_LIBRARY_PATH,这在安装完成后是必须的,否则系统可能无法找到CUDA的相关命令库。 需要注意的是,安装CUDA前需要确认系统满足要求,比如正确的NVIDIA驱动已经安装,GCC版本是否兼容等。引用[3]提到安装GCC,但可能Ubuntu 18.04默认的GCC版本已经足够,但可能需要检查。 现在,我需要整理出清晰的步骤,可能分为几个部分:安装前的准备,安装CUDA 10.1安装cuDNN 7.6.5,配置环境变量,以及验证安装是否成功。 在安装前的准备中,需要确保系统有NVIDIA驱动,禁用nouveau驱动,可能还需要更新系统。引用[3]提到安装GCC,所以可能需要执行sudo apt-get install build-essential来安装构建工具。 对于CUDA安装,根据引用[1][4],有两种方法:使用deb包或者.run文件。需要分别说明这两种方法,但用户可能希望选择其中一种。可能推荐使用deb方式,因为引用[1]的步骤更详细,并且可能更符合Ubuntu的包管理习惯。但需要确认提供的deb包是否正确,用户是否已经下载了对应的文件。 安装cuDNN方面,用户需要从NVIDIA官网下载对应版本的cuDNN,可能需要注册账户。然后通过tar命令解压,并将文件复制到CUDA安装目录中,例如/usr/local/cuda-10.1/,并设置权限。 环境变量的配置部分,用户需要将CUDA的binlib64路径添加到.bashrc或.profile文件中,然后source使其生效。 最后,验证安装是否成功,可以通过检查nvcc版本,运行deviceQuery或bandwidthTest示例程序,以及检查cuDNN安装情况。 需要确保步骤中的命令正确无误,并且考虑到可能的错误点,例如依赖问题、权限问题,或者路径设置错误。同时,提醒用户注意版本匹配,特别是CUDAcuDNN的兼容性,以及NVIDIA驱动与CUDA版本的兼容性。 可能还需要注意,在安装CUDA时,安装程序可能会提示是否安装NVIDIA驱动,用户需要根据情况选择是否跳过,如果已经安装了正确版本的驱动的话。例如,在引用[4]的.run文件安装中,用户可能需要取消勾选驱动安装,如果已经安装了合适的驱动。 总结步骤: 1. 安装前准备:更新系统,安装依赖,禁用nouveau驱动,安装NVIDIA驱动。 2. 安装CUDA 10.1:使用deb包或.run文件。 3. 安装cuDNN 7.6.5:下载并复制文件到CUDA目录。 4. 配置环境变量。 5. 验证安装。 现在需要将这些步骤详细地写出来,并参考提供的引用资料中的具体命令,确保正确性。同时,生成相关问题,可能涉及安装过程中可能遇到的问题,不同安装方式的区别,验证方法,或者常见错误的解决。</think>### Ubuntu 18.04 安装 CUDA 10.1 cuDNN 7.6.5 的步骤 #### 一、安装前准备 1. **更新系统与安装依赖** ```bash sudo apt-get update sudo apt-get install build-essential # 安装GCC等编译工具[^3] ``` 2. **禁用 Nouveau 驱动** 在文件 `/etc/modprobe.d/blacklist-nouveau.conf` 中添加: ```bash blacklist nouveau options nouveau modeset=0 ``` 更新并重启: ```bash sudo update-initramfs -u sudo reboot ``` 3. **安装 NVIDIA 驱动** 通过 `ubuntu-drivers devices` 查看推荐驱动版本,或从 NVIDIA 官网下载对应驱动手动安装。 --- #### 二、安装 CUDA 10.1 ##### 方法1:使用 `.deb` 包安装(推荐) 1. 下载 CUDA 10.1 的 `.deb` 文件(如 `cuda-repo-ubuntu1804-10-1-local-10.1.243-418.87.00_1.0-1_amd64.deb`)。 2. 执行以下命令: ```bash sudo dpkg -i cuda-repo-ubuntu1804-10-1-local-10.1.243-418.87.00_1.0-1_amd64.deb sudo apt-key add /var/cuda-repo-10-1-local-10.1.243-418.87.00/7fa2af80.pub # 添加密钥[^1] sudo apt-get update sudo apt-get install cuda # 安装CUDA[^1] ``` ##### 方法2:使用 `.run` 文件安装 1. 下载 `.run` 文件(如 `cuda_10.1.105_418.39_linux.run`)。 2. 赋予执行权限并安装: ```bash chmod +x ./cuda_10.1.105_418.39_linux.run sudo ./cuda_10.1.105_418.39_linux.run # 运行安装程序[^4] ``` **注意**:安装时取消勾选 `Install NVIDIA Accelerated Graphics Driver`(若已安装驱动)。 --- #### 三、安装 cuDNN 7.6.5 1. 从 [NVIDIA官网](https://developer.nvidia.com/cudnn) 下载 **cuDNN 7.6.5 for CUDA 10.1**(需注册账号)。 2. 解压并复制文件到 CUDA 目录: ```bash tar -zxvf cudnn-10.1-linux-x64-v7.6.5.32.tgz sudo cp cuda/include/cudnn.h /usr/local/cuda-10.1/include/ sudo cp cuda/lib64/libcudnn* /usr/local/cuda-10.1/lib64/ sudo chmod a+r /usr/local/cuda-10.1/include/cudnn.h /usr/local/cuda-10.1/lib64/libcudnn* # 设置权限[^2] ``` --- #### 四、配置环境变量 在 `~/.bashrc` 文件末尾添加: ```bash export PATH=/usr/local/cuda-10.1/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-10.1/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} # 配置库路径 ``` 生效配置: ```bash source ~/.bashrc ``` --- #### 五、验证安装 1. **检查 CUDA 版本**: ```bash nvcc --version # 应显示 CUDA 10.1 ``` 2. **运行测试程序**: ```bash cd /usr/local/cuda-10.1/samples/1_Utilities/deviceQuery sudo make ./deviceQuery # 输出 Result = PASS 表示成功 ``` 3. **验证 cuDNN**: 编译并运行 cuDNN 示例代码(需从官网下载示例程序)。 ---
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值