生成模型实战 | GPT-2(Generative Pretrained Transformer 2)详解与实现

0. 前言

GPT-2 (Generative Pretrained Transformer 2) 是由 OpenAI 开发的大语言模型 (Large Language Model, LLM)。它标志着自然语言处理 (Large Language Model, NLP) 领域的一个重要里程碑,并为更复杂的模型的发展奠定了基础。GPT-2 是对 GPT-1 的改进,旨在根据给定的提示生成连贯且具有上下文相关性的文本,展示了在多个风格和主题中模仿人类生成文本的卓越能力。
GPT-2 基于 Transformer 架构。然而,与原始 Transformer 不同,GPT-2 是一个仅包含解码器的 Transformer,这意味着该模型没有编码器部分。在将英语短语翻译成法语时,编码器捕捉英语短语的含义,并将其传递给解码器生成翻译。然而,在文本生成任务中,模型不需要编码器来理解不同的语言,而是基于句子中先前的词元生成文本,采用仅解码器架构。像其他 Transformer 模型一样,GPT-2 使用自注意力机制并行处理输入数据,显著提高了训练

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值