生成模型实战 | GPT-2 详解与实现
0. 前言
GPT-2
(Generative Pretrained Transformer 2
) 是由 OpenAI
开发的大语言模型 (Large Language Model
, LLM
)。它标志着自然语言处理 (Large Language Model
, NLP
) 领域的一个重要里程碑,并为更复杂的模型的发展奠定了基础。GPT-2
是对 GPT-1
的改进,旨在根据给定的提示生成连贯且具有上下文相关性的文本,展示了在多个风格和主题中模仿人类生成文本的卓越能力。
GPT-2
基于 Transformer
架构。然而,与原始 Transformer 不同,GPT-2
是一个仅包含解码器的 Transformer
,这意味着该模型没有编码器部分。在将英语短语翻译成法语时,编码器捕捉英语短语的含义,并将其传递给解码器生成翻译。然而,在文本生成任务中,模型不需要编码器来理解不同的语言,而是基于句子中先前的词元生成文本,采用仅解码器架构。像其他 Transformer
模型一样,GPT-2
使用自注意力机制并行处理输入数据,显著提高了训练