生成模型实战 | 轻量级GPT模型
0. 前言
我们已经学习了如何构建 GPT-2XL 模型,加载 OpenAI
发布的预训练权重,并利用 GPT-2XL
模型生成文本。但学习如何从零开始训练一个 Transformer
模型至关重要。首先,理解如何训练一个 Transformer
可以帮助我们掌握微调所需的技能,训练一个模型涉及随机初始化参数,微调则是加载预训练权重并进一步训练模型。其次,训练或微调一个 Transformer
使我们能够根据特定需求和领域对模型进行定制,这可以显著提升模型在特定应用场景中的表现和相关性。最后,训练自己的 Transformer
或微调一个现有模型,可以更好地控制数据和隐私,尤其是在处理敏感应用或专有数据时非常重要。总之,掌握 Transformer
的训练和微调,对于利用语言模型进行特定应用来说至关重要。
在本节中,我们将构建一个简化版的 GPT
模型,参数约为 500
万。这个小型模型遵循 GPT-2XL
的架构,其主要区别在于它只有 3
个解码器块,且嵌入维度为 256
,而原始的 GPT-2XL
则有 48
个解码器块且嵌入维度为 1600