生成模型实战 | VQ-GAN(Vector Quantized-Generative Adversarial Network)
0. 前言
随着生成模型的快速发展,如何兼顾图像质量与可建模性一直是该领域研究的核心问题。虽然生成对抗网络 (Generative Adversarial Network, GAN) 擅长生成高保真细节,但训练不稳定;向量量化变分子自编码器 (Vector Quantised-Variational AutoEncoder, VQ-VAE) 能提供离散潜表示,适合 Transformer 等序列建模,但细节不足。向量量化生成对抗网络 (Vector Quantized-Generative Adversarial Network
, VQ-GAN
) 结合了两者的优势,通过向量量化 (Vector Quantised
, VQ
) 构建离散潜空间,结合感知损失与对抗损失,在保持语义一致性的同时能够生成纹理细节丰富的图像。在本节中,我们将详细解释 VQ-GAN
的技术原理和各