生成模型实战 | VQ-GAN(Vector Quantized-Generative Adversarial Network)

0. 前言

随着生成模型的快速发展,如何兼顾图像质量与可建模性一直是该领域研究的核心问题。虽然生成对抗网络 (Generative Adversarial Network, GAN) 擅长生成高保真细节,但训练不稳定;向量量化变分子自编码器 (Vector Quantised-Variational AutoEncoder, VQ-VAE) 能提供离散潜表示,适合 Transformer 等序列建模,但细节不足。向量量化生成对抗网络 (Vector Quantized-Generative Adversarial Network, VQ-GAN) 结合了两者的优势,通过向量量化 (Vector Quantised, VQ) 构建离散潜空间,结合感知损失与对抗损失,在保持语义一致性的同时能够生成纹理细节丰富的图像。在本节中,我们将详细解释 VQ-GAN 的技术原理和各

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值