洛谷传送门
BZOJ传送门
题目描述
折叠的定义如下:
-
一个字符串可以看成它自身的折叠。记作 S = S S = S S=S
-
X ( S ) X(S) X(S)是 X ( X > 1 ) X(X>1) X(X>1)个 S S S连接在一起的串的折叠。记作 X ( S ) = S S S S … S ( X 个 S ) X(S) = SSSS…S(X个S) X(S)=SSSS…S(X个S)。
-
如果 A = A ’ , B = B ’ A = A’, B = B’ A=A’,B=B’,则 A B = A ’ B ’ AB = A’B’ AB=A’B’ 例如,因为 3 ( A ) = A A A , 2 ( B ) = B B 3(A) = AAA, 2(B) = BB 3(A)=AAA,2(B)=BB,所以 3 ( A ) C 2 ( B ) = A A A C B B 3(A)C2(B) = AAACBB 3(A)C2(B)=AAACBB,而 2 ( 3 ( A ) C ) 2 ( B ) = A A A C A A A C B B 2(3(A)C)2(B) = AAACAAACBB 2(3(A)C)2(B)=AAACAAACBB
给一个字符串,求它的最短折叠。例如 A A A A A A A A A A B A B A B C C D AAAAAAAAAABABABCCD AAAAAAAAAABABABCCD的最短折叠为: 9 ( A ) 3 ( A B ) C C D 9(A)3(AB)CCD 9(A)3(AB)CCD。
输入输出格式
输入格式:
仅一行,即字符串 S S S,长度保证不超过 100 100 100。
输出格式:
仅一行,即最短的折叠长度。
输入输出样例
输入样例#1:
NEERCYESYESYESNEERCYESYESYES
输出样例#1:
14
说明
一个最短的折叠为: 2 ( N E E R C 3 ( Y E S ) ) 2(NEERC3(YES)) 2(NEERC3(YES))
解题分析
区间 d p dp dp, 大力判是否相同再转移即可。
复杂度? 似乎是卡不满的 O ( N 4 ) O(N^4) O(N4)。
代码如下:
#include <cstdio>
#include <cstring>
#include <cctype>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#define R register
#define IN inline
#define W while
#define gc getchar()
#define MX 105
int dp[MX][MX];
char buf[MX];
int len, ans;
IN bool judge(R int x1, R int y1, R int x2, R int y2)
{
if(y1 - x1 > y2 - x2) return false;
if((y2 - x1 + 1) % (y1 - x1 + 1)) return false;
int len = y1 - x1 + 1;
for (R int i = x2; i <= y2; ++i)
if(buf[i] ^ buf[i - len]) return false;
return true;
}
IN int get (R int now)
{
R int ret = 0;
W (now) ++ret, now /= 10;
return ret;
}
int main(void)
{
scanf("%s", buf + 1);
len = std::strlen(buf + 1);
for (R int i = 1; i <= len; ++i)
for (R int j = i; j <= len; ++j)
dp[i][j] = j - i + 1;
for (R int i = 1; i < len; ++i)
{
for (R int j = 1; j <= len - i; ++j)
{
for (R int k = j; k < j + i; ++k)
{
if(!judge(j, k, k + 1, j + i)) dp[j][j + i] = std::min(dp[j][j + i], dp[j][k] + dp[k + 1][j + i]);
else dp[j][j + i] = std::min(dp[j][j + i], dp[j][k] + get((i + 1) / (k - j + 1)) + 2);
}
}
}
printf("%d", dp[1][len]);
}