[C++竞赛]note:递归与递推

以下是对递归和递推的详细补充说明,包含更多技术细节、应用场景和扩展示例:

1. 递归(Recursion)深入解析

核心原理

递归基于数学归纳法思想(在函数中调用自己):

  1. 基础步骤(Base Case):解决最小规模问题(如 n=0 或 n=1)
  2. 归纳步骤(Recursive Step):假设已解决规模 k-1 的问题,用其结果构建规模 k 的解

有一个很古老的表情包,生动的解释了递归的过程:
转载自:https://blog.csdn.net/qq_40817827/article/details/89950325

内存机制
  • 调用栈(Call Stack):每次递归调用在栈中创建新帧(frame),包含:
    • 局部变量
    • 返回地址
    • 函数参数
  • 栈溢出风险:当递归深度过大(如斐波那契数列 n>1000),超出栈容量导致崩溃
高级类型
// 1. 直接递归
function direct(n):
    if base_case: return
    else: direct(n-1)

// 2. 间接递归(A→B→A)
function A(n):
    if n==0: return 1
    else: return B(n)

function B(n):
    return A(n-1)*n

// 3. 尾递归(可优化为递推)
function tail_recursive(n, acc=1):
    if n==0: return acc
    else: return tail_recursive(n-1, acc*n)
复杂示例:汉诺塔问题
function hanoi(n, source, auxiliary, target):
    if n == 1:
        print("Move disk 1 from", source, "to", target)
        return
    // 递归步骤:
    hanoi(n-1, source, target, auxiliary)  // 将n-1个盘移到辅助柱
    print("Move disk", n, "from", source, "to", target)
    hanoi(n-1, auxiliary, source, target)  // 将n-1个盘移到目标柱

// 调用:移动3个盘(A→C,B为辅助)
hanoi(3, 'A', 'B', 'C')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值