yolov11快速上手模型训练

部署好了yolov11的环境,现在我们就上手训练自己的第一个模型吧!!!

一、寻找自己的数据集

这里我们找了一些向日葵照片当做测试数据集,数据集数量越多训练出来的模型效果也更好,这里仅做测试。

 如果是训练分类模型就不需要标注文件,如果是目标检测就需要标注文件了,我们可以使用一些标注工具来得到标注文件

二、编写yaml文件

在数据集路径文件下创建yaml文件

三、训练模型 

这是一个简单的训练模型代码,可以根据自己的需求更改对应的参数达到更好的训练效果

from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO("yolo11n.pt")  # 加载预训练模型
    model.train(data="C:\\Users\z1788\Desktop\\ultralytics-main (2)\\ultralytics-main\\ultralytics-main\dataset_23313\custom_dataset.yaml",  # 数据集配置文件
                epochs=100,
                imgsz=640,
                batch=16,
                device='0')  # 使用GPU训练

执行完该训练程序后,我们可以得到训练模型及一些训练时参数(可帮助我们分析)

 四、测试模型

我们使用一个简单的测试代码测试

from ultralytics import YOLO
# 加载预训练的 YOLOv11n 模型
model = YOLO('best.pt')
source = 'img_5.png' #更改为自己的图片路径
# 运行推理,并附加参数
model.predict(source, save=True)

这里看到我们训练模型识别的效果啦,是不是很有意思呢,快去试试,开始你的第一个模型吧!!! 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值