部署好了yolov11的环境,现在我们就上手训练自己的第一个模型吧!!!
一、寻找自己的数据集
这里我们找了一些向日葵照片当做测试数据集,数据集数量越多训练出来的模型效果也更好,这里仅做测试。
如果是训练分类模型就不需要标注文件,如果是目标检测就需要标注文件了,我们可以使用一些标注工具来得到标注文件
二、编写yaml文件
在数据集路径文件下创建yaml文件
三、训练模型
这是一个简单的训练模型代码,可以根据自己的需求更改对应的参数达到更好的训练效果
from ultralytics import YOLO
if __name__ == '__main__':
model = YOLO("yolo11n.pt") # 加载预训练模型
model.train(data="C:\\Users\z1788\Desktop\\ultralytics-main (2)\\ultralytics-main\\ultralytics-main\dataset_23313\custom_dataset.yaml", # 数据集配置文件
epochs=100,
imgsz=640,
batch=16,
device='0') # 使用GPU训练
执行完该训练程序后,我们可以得到训练模型及一些训练时参数(可帮助我们分析)
四、测试模型
我们使用一个简单的测试代码测试
from ultralytics import YOLO
# 加载预训练的 YOLOv11n 模型
model = YOLO('best.pt')
source = 'img_5.png' #更改为自己的图片路径
# 运行推理,并附加参数
model.predict(source, save=True)
这里看到我们训练模型识别的效果啦,是不是很有意思呢,快去试试,开始你的第一个模型吧!!!