学习实践ChatGLM-6B(部署+运行+微调)

本文介绍了ChatGLM-6B模型的基础信息,它是一个62亿参数的对话机器人模型,支持多种应用场景。文章详细阐述了如何在Linux环境下部署模型,包括网页版和命令行Demo的运行,以及在显存有限的情况下如何通过量化技术降低需求。此外,还讲解了如何使用P-Tuning进行模型微调,并提供了微调的依赖安装和数据集准备步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对视觉类论文详解(免费)感兴趣的同学,可以关注微信公众号 李卓璐随手记,将会不定期发布,注意查收哦~

1、ChatGLM-6B内容简单介绍

该模型基于 General Language Model (GLM) 架构,具有 62 亿参数。
注:结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。
ChatGLM-6B可以实现的能力这是一个对话机器人,所以基本的问答,系统都支持。
官方提供的使用实例:
自我认知
提纲写作
文案写作
邮件助手
信息抽取
角色扮演
评论比较
旅游向导

运行界面

在这里插入图片描述

2、ChatGLM-6B模型实战

GLM模型GitHub代码地址
部署步骤如下:(注意使用的是Linux系统,本人数次尝试用Windows以失败告终)

# 新
ChatGLM-6B 是一种预训练语言模型,通常用于大规模文本生成、问答系统和自然语言理解等任务。部署 ChatGLM-6B 并微调至特定应用场景,如P-Tuning(Prompt Tuning),通常需要经过以下步骤: 1. **下载模型库**:首先从官方或提供者的仓库下载包含 ChatGLM-6B 的模型库,比如 Hugging Face的transformers库。 2. **加载模型**:使用对应的Python API(如`from transformers import GPT2LMHeadModel, GPT2Tokenizer`)加载模型和分词器。 3. **微调(P-Tuning)**:对于P-Tuning,你需要准备一些精心设计的提示(prompts)。将原始的模型输入更改为包含上下文提示的形式,然后通过小规模的数据集调整模型对这些提示的响应。 4. **编写API接口**:创建一个`api.py`文件,编写函数来处理用户的请求。这个函数会接受用户输入,应用P-Tuning后的模型生成响应,并返回给用户。你可以利用`model.generate()`或其他适合的方法来完成文本生成。 5. **运行服务**:设置并运行API服务,可以使用Flask、FastAPI之类的Web框架将API暴露在网络上。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer # 加载模型和分词器 model = AutoModelForCausalLM.from_pretrained("your_model_name") tokenizer = AutoTokenizer.from_pretrained("your_tokenizer_name") def generate_response(prompt): input_ids = tokenizer.encode(prompt, return_tensors="pt") response = model.generate(input_ids, max_length=100, do_sample=True) return tokenizer.decode(response[0], skip_special_tokens=True) if __name__ == "__main__": app.run_server(host='localhost', port=8000) # 示例中的服务器运行配置 ```
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值