深度学习之利用yolov4训练数据集(基于PyCharm实现)

本文详细介绍了YOLOv4检测算法的结构,包括CSPDarknet53、Neck网络和Head,以及如何使用PyCharm进行训练和标注数据。重点讲述了训练数据集的准备、实验结果分析和可能遇到的问题,包括技术配置和设备兼容性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.YOLOv4简介

1.1YOLOv4检测算法

2. 训练数据集

2.1 标注图像集

2.2 用pycharm训练数据集

3.实验结果

3.1结果

3.2 分析

4.特别说明

4.1可能存在的问题

4.2技术、设备问题

4.3参考文献


1.YOLOv4简介

1.1 YOLOv4检测算法

 YOLOv4检测算法主要是由主干特征提取网络CSPDarknet53、颈部特征融合网络Neck以及检测头Head这三部分组成。其中颈部网络Neck又由路径聚合网络(path aggregation network,PANet)和空间金字塔池化(spatial pyramid pooling,SPP)模块组成,其网络结构如下图所示:

上图展示了YOLOv4目标检测算法的网络框图。该目标检测算法通常可以划分为4个模块,具体包括:输入端、基准网络、Neck网络与Head输出端。

2. 训练数据集

2.1 标注图像集

①这里的主要代码是老师在课堂上提供的,把它下载、解压。

②下载好自己的数据集,保存在"yolov4-pytorch-master\VOCdevkit\VOC2007\JPEGImages"目录下,统一图片格式为.jpg,且下载的图片至少要大于100张。(批量下载图片可以利用Microsoft Edge拓展中的图片批量下载或者利用python代码爬虫,当然,也可以分工合作。)

③win+r打开命令提示符,输入代码下载安装labelimg(目标检测标注工具)。

1.pip install labelimg -i https://pyp
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值