目录
1.YOLOv4简介
1.1 YOLOv4检测算法
YOLOv4检测算法主要是由主干特征提取网络CSPDarknet53、颈部特征融合网络Neck以及检测头Head这三部分组成。其中颈部网络Neck又由路径聚合网络(path aggregation network,PANet)和空间金字塔池化(spatial pyramid pooling,SPP)模块组成,其网络结构如下图所示:
上图展示了YOLOv4目标检测算法的网络框图。该目标检测算法通常可以划分为4个模块,具体包括:输入端、基准网络、Neck网络与Head输出端。
2. 训练数据集
2.1 标注图像集
①这里的主要代码是老师在课堂上提供的,把它下载、解压。
②下载好自己的数据集,保存在"yolov4-pytorch-master\VOCdevkit\VOC2007\JPEGImages"目录下,统一图片格式为.jpg,且下载的图片至少要大于100张。(批量下载图片可以利用Microsoft Edge拓展中的图片批量下载或者利用python代码爬虫,当然,也可以分工合作。)
③win+r打开命令提示符,输入代码下载安装labelimg(目标检测标注工具)。
1.pip install labelimg -i https://pyp