PyTorch CUDA error: an illegal memory access was encountered

本文介绍了一个PyTorch中常见的CUDA错误及其解决方法。通过详细检查代码及使用自定义函数printTensor来确保所有数据都在同一设备上运行,最终定位到问题是由未正确指定设备的nn.*网络模块引发。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

调试pytorch代码,遇到了这个错误。
还有个类似的错误CUDA error: CUBLAS_STATUS_INTERNAL_ERROR when calling cublasSgemm(...)

网络搜索,各种解答都有,驱动版本,固定cuda设备号等等。虽然都有成功的情况,但感觉不靠谱。

这个错误信息,看着还像是内存访问错误。
解决办法:

仔细检查代码,把数据统一在cpu或gpu上。

检查过程很麻烦,为了方便检查,自己写了个小函数。

def printTensor(t, tag:str):
    sz = t.size()
    p = t
    for i in range(len(sz)-1):
        p = p[0]
    if len(p)>3:
        p = p[:3]

    print('\t%s.size'%tag, t.size(), ' dev :', t.device, ": ",p.data)
    return 

使用时,printTensor(context, 'context'),输出类似

context.size torch.Size([4, 10, 10]) dev : cuda:0 : tensor([0, 0, 0], device=‘cuda:0’)

这个函数有两个要点:

  1. 输出了设备
  2. 输出了数据

第二点尤其重要,只输出设备不一定会触发错误。只有输出数据,pytorch按流程跑下来,才会真正出错。

笔者找到最后,发现是nn.*的网络没有明确调用to(device)导致的。但自定义的模型确实都继承了nn.Module,后续还得继续查。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值