AI小白学人工智能基础

一、监督学习:先整理数据,打标签
二、常用算法思维方式:穷举法、贪心法(梯度下降)、分制、动态规则
三、不是先有算法,先有数据集,为了想要数据集中打某些数据而设计的方式方法叫算法,这个用程序实现算法,叫机器学习的过程
四、人工智能AI-》机器学习-》深度学习
五、历史过程:
    1>  基于规则的系统(Rule-based systems),规则多了,人工无法维护
        input -> hand-designed program -> Output
        例如:在数学中求函数f(x)的原函数,由程序来求原函数
            a:  先构造一批所谓的知识库(knowledge base):
                 f(e^x)dx = f(e^x)
    2>  经典的机器学习(Classic machine learning)
        input -> hand-designed features -> Mapping from features -> output
        文本、图片、音视频等等,人为的提取特征,然后把特征转化为向量或者张量。
        在特征向量或特征张量与输出建立一个函数关系:output(y) = f(input)或f(x):函数映射关系
        例如:线性模型、感知机、各种神经网络等都是在做这种函数映射关系,统称为经典机器学习

    3>  表示学习
        input->Features->Mapping from Features->output
        a>  提取特征的任务交给机器,让机器自动的学习提取特征
        b>  需要提取的特征越多,维度越高,需要的数据越大,维度诅咒;
        c>  提取特征多了,维度变高维,需要降维,此时就需要做高维到低维的映射(线性映射或者非线性空间映射)
        d>  例如:线性映射->线性代数就可以 y=wx+b
    4>  深度学习(Deep Learning)
        input->Simple features ->Additional layers of more abstract features->Mapping from features->output
        a>  EndtoEnd,端到端的学习方法
        b>  文本->序列,图片->像素向量,音频->波形序列,视频->图片序列+音频波形序列

六、最早的人工智能来源于“神经科学”,现在的人工只能来源于"数学+工程学"
    1>  5亿年前寒武纪生物大爆发,眼睛演进出来->运动需求->大爆发
    2>  1955年用猫做实验,在脑部植入电极,给猫看幻灯片,得出猫大脑处理视觉信息,是大脑神经分层处理的,
        浅层神经处理特征(比如线条的移动、颜色块等高级特征)影响特别大

七、神经元如何处理信息(略)
八、模仿神经元处理信息:正向传播、反向传播
    1>  正向传播
        a + b = c ,当 a = 1,b = 2时,c =3
    2>  反向传播 求偏导,反向传播打核心叫做计算图
九、深度学习需要知识:概率论、数据统计、python
十、人工智能框架:Theano一个开源的学习框架,后来由Goolge开发出Tensorflow-> TF Boys
               Torch一个开源学习框架,2017年由Facebook开发出Pytorch
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FFmpeg123

你的鼓励,我会更加努力输出

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值