一、监督学习:先整理数据,打标签 二、常用算法思维方式:穷举法、贪心法(梯度下降)、分制、动态规则 三、不是先有算法,先有数据集,为了想要数据集中打某些数据而设计的方式方法叫算法,这个用程序实现算法,叫机器学习的过程 四、人工智能AI-》机器学习-》深度学习 五、历史过程: 1> 基于规则的系统(Rule-based systems),规则多了,人工无法维护 input -> hand-designed program -> Output 例如:在数学中求函数f(x)的原函数,由程序来求原函数 a: 先构造一批所谓的知识库(knowledge base): f(e^x)dx = f(e^x) 2> 经典的机器学习(Classic machine learning) input -> hand-designed features -> Mapping from features -> output 文本、图片、音视频等等,人为的提取特征,然后把特征转化为向量或者张量。 在特征向量或特征张量与输出建立一个函数关系:output(y) = f(input)或f(x):函数映射关系 例如:线性模型、感知机、各种神经网络等都是在做这种函数映射关系,统称为经典机器学习 3> 表示学习 input->Features->Mapping from Features->output a> 提取特征的任务交给机器,让机器自动的学习提取特征 b> 需要提取的特征越多,维度越高,需要的数据越大,维度诅咒; c> 提取特征多了,维度变高维,需要降维,此时就需要做高维到低维的映射(线性映射或者非线性空间映射) d> 例如:线性映射->线性代数就可以 y=wx+b 4> 深度学习(Deep Learning) input->Simple features ->Additional layers of more abstract features->Mapping from features->output a> EndtoEnd,端到端的学习方法 b> 文本->序列,图片->像素向量,音频->波形序列,视频->图片序列+音频波形序列 六、最早的人工智能来源于“神经科学”,现在的人工只能来源于"数学+工程学" 1> 5亿年前寒武纪生物大爆发,眼睛演进出来->运动需求->大爆发 2> 1955年用猫做实验,在脑部植入电极,给猫看幻灯片,得出猫大脑处理视觉信息,是大脑神经分层处理的, 浅层神经处理特征(比如线条的移动、颜色块等高级特征)影响特别大 七、神经元如何处理信息(略) 八、模仿神经元处理信息:正向传播、反向传播 1> 正向传播 a + b = c ,当 a = 1,b = 2时,c =3 2> 反向传播 求偏导,反向传播打核心叫做计算图 九、深度学习需要知识:概率论、数据统计、python 十、人工智能框架:Theano一个开源的学习框架,后来由Goolge开发出Tensorflow-> TF Boys Torch一个开源学习框架,2017年由Facebook开发出Pytorch
AI小白学人工智能基础
于 2024-12-31 17:33:11 首次发布