线性变换
投影是一种线性变换
线性变换的两大法则:
衍生出来的一个法则:
来看一个不满足线性变换的例子,将一个向量加上v0v0
此例违反法则1和法则2,不满足线性变换
同样地,求向量的模也不是线性转换,由于T(-v) = -T(v)
另一个满足线性变换的例子,向量旋转
矩阵变换,满足线性变换
将三维空间的向量映射到二维空间
如果我们想了解线性变换对于整个输入空间的影响,该怎么做?
答案是找出线性变换对于输入空间基向量的影响!
坐标
坐标源自基的选择
通过矩阵表示线性变换
先为输入空间和输出空间各自定义一组基,本例中输入空间与输出空间的基相同。
注意到,我们选取的基实际上就是A的特征向量,这也使A为对角矩阵,特征值即为对角线上的值
定理:挑选特征向量为基,转换矩阵即为对角矩阵
看另一个不是对角矩阵的例子
由于这里的基不是P的特征向量,因此P不是对角矩阵
通过矩阵表示线性变换的一般方法
首先,确定输入空间和输出空间的基向量
输入空间基向量:v1,v2,....vnv1,v2,....vn
输出空间基向量:w1,w2,...wmw1,w2,...wm
找出v1v1对于输出空间的映射:
T(v1)=a11w1+a21w2+a31w3....+am1wmT(v1)=a11w1+a21w2+a31w3....+am1wm
其中a11,a21,...am1a11,a21,...am1即为转换矩阵A的第一列
然后依次求出A的第二列到第n列,即得到转换矩阵A
看看求导的线性转换
输入的基为:1,x,x21,x,x2
输出的基为:1,x1,x
得到的A为:
[001002][010002]