MIT线性代数笔记-第三十讲

本文探讨了线性变换的基本概念及其重要性质,包括线性变换的两大法则、如何通过矩阵表示线性变换,以及如何选择合适的基来简化变换过程。特别讨论了通过特征向量和对角矩阵表示线性变换的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性变换

投影是一种线性变换
这里写图片描述

线性变换的两大法则:
这里写图片描述

衍生出来的一个法则:
这里写图片描述

来看一个不满足线性变换的例子,将一个向量加上v0v0
这里写图片描述
此例违反法则1和法则2,不满足线性变换

同样地,求向量的模也不是线性转换,由于T(-v) = -T(v)

另一个满足线性变换的例子,向量旋转
这里写图片描述

矩阵变换,满足线性变换
这里写图片描述

将三维空间的向量映射到二维空间
这里写图片描述

如果我们想了解线性变换对于整个输入空间的影响,该怎么做?
这里写图片描述

答案是找出线性变换对于输入空间基向量的影响!

坐标

这里写图片描述
坐标源自基的选择

通过矩阵表示线性变换

这里写图片描述这里写图片描述

先为输入空间和输出空间各自定义一组基,本例中输入空间与输出空间的基相同。
这里写图片描述
注意到,我们选取的基实际上就是A的特征向量,这也使A为对角矩阵,特征值即为对角线上的值

定理:挑选特征向量为基,转换矩阵即为对角矩阵

看另一个不是对角矩阵的例子
这里写图片描述
由于这里的基不是P的特征向量,因此P不是对角矩阵

通过矩阵表示线性变换的一般方法

这里写图片描述
首先,确定输入空间和输出空间的基向量
输入空间基向量:v1,v2,....vnv1,v2,....vn
输出空间基向量:w1,w2,...wmw1,w2,...wm

找出v1v1对于输出空间的映射:
T(v1)=a11w1+a21w2+a31w3....+am1wmT(v1)=a11w1+a21w2+a31w3....+am1wm
其中a11,a21,...am1a11,a21,...am1即为转换矩阵A的第一列
然后依次求出A的第二列到第n列,即得到转换矩阵A

看看求导的线性转换
这里写图片描述

输入的基为:1,x,x21,x,x2
输出的基为:1,x1,x

得到的A为:
[001002][010002]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值