MIT线性代数笔记-第三十一讲

本文探讨了信号与图像压缩的基本原理,重点介绍了基变换的概念及其应用。通过对比不同类型的基,如标准基、傅里叶基及小波基,阐述了它们在图像压缩中的优劣。同时,详细解析了JPEG和小波变换的有损压缩过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Change of Basis

信号压缩和图像压缩的本质是基变换

这里写图片描述
x为初始基的系数,c为新基的系数,通过x=Wcx=Wc求出转换后的c

Compression of Images

这里写图片描述

一张图片有512512512∗512个像素,每个像素的取值范围为0<=xi<2550<=xi<255,用一个长为51225122的向量来表示,x的形式为:
xxx...[xxx...]
这里写图片描述
显然用的是标准基,效果比较差。看一组好一些的基
这里写图片描述

再看看傅里叶基
这里写图片描述
基本步骤:
1.输入信号x
2.无损。选取基,用坐标表示
3.有损压缩(基变换,改变坐标)

我的理解是,如果用标准基,假设需要表示一个818∗1,元素值为8的列向量,那么需要8个8,而换一种基可能只需要1个8就能表示(其实就是通过转换基,减少系数)

一种常用的压缩图像的方式为JPEG(联合图像专家组)

傅里叶基的竞争对手,小波基
这里写图片描述

有损压缩步骤(以小波基为例)
这里写图片描述
可以看出来,实际上就是求出c1,c2,c3这些系数的值.怎么求?Ax=bAx=b!
这里写图片描述

于是问题变成了
这里写图片描述

我们观察一下小波基
这里写图片描述
显然,它是正交的,那么我们对其正规化,一个标准正交的矩阵的逆是什么?它的转置!因此很容易就可以求出c

总结一下良好的基的性质:
1.计算要快
2.压缩性要好(就是丢掉一些系数也不会带来太大的影响)

Transformation<->Matrix

这里写图片描述

重要结论:
如果A和B属于同一个变换T,那么A和B是相似的

这里写图片描述
上节课讲的内容,如果知道变换T作用于每个基向量的效果,我们就知道了整个变换T。变换矩阵的第一列即为作用于v1v1的向量,依次类推,即可构建出变换矩阵。

注意,如果v1,v2...v8v1,v2...v8为特征向量,那么A为对角阵,元素值即为特征值

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值