Change of Basis
信号压缩和图像压缩的本质是基变换
x为初始基的系数,c为新基的系数,通过x=Wcx=Wc求出转换后的c
Compression of Images
一张图片有512∗512512∗512个像素,每个像素的取值范围为0<=xi<2550<=xi<255,用一个长为51225122的向量来表示,x的形式为:
⎡⎣⎢⎢⎢xxx...⎤⎦⎥⎥⎥[xxx...]
显然用的是标准基,效果比较差。看一组好一些的基
再看看傅里叶基
基本步骤:
1.输入信号x
2.无损。选取基,用坐标表示
3.有损压缩(基变换,改变坐标)
我的理解是,如果用标准基,假设需要表示一个8∗18∗1,元素值为8的列向量,那么需要8个8,而换一种基可能只需要1个8就能表示(其实就是通过转换基,减少系数)
一种常用的压缩图像的方式为JPEG(联合图像专家组)
傅里叶基的竞争对手,小波基
有损压缩步骤(以小波基为例)
可以看出来,实际上就是求出c1,c2,c3这些系数的值.怎么求?Ax=bAx=b!
于是问题变成了
我们观察一下小波基
显然,它是正交的,那么我们对其正规化,一个标准正交的矩阵的逆是什么?它的转置!因此很容易就可以求出c
总结一下良好的基的性质:
1.计算要快
2.压缩性要好(就是丢掉一些系数也不会带来太大的影响)
Transformation<->Matrix
重要结论:
如果A和B属于同一个变换T,那么A和B是相似的
上节课讲的内容,如果知道变换T作用于每个基向量的效果,我们就知道了整个变换T。变换矩阵的第一列即为作用于v1v1的向量,依次类推,即可构建出变换矩阵。
注意,如果v1,v2...v8v1,v2...v8为特征向量,那么A为对角阵,元素值即为特征值