期末复习课,也是通过习题
第一题
由于
Ax=⎡⎣⎢100⎤⎦⎥Ax=[100]无解,得知r < m
由
Ax=⎡⎣⎢010⎤⎦⎥Ax=[010]有一个解,得知r = n,综合可得m = 3 > n = r
A的一个可能解:
将⎡⎣⎢010⎤⎦⎥[010]放进来,然后注意
⎡⎣⎢100⎤⎦⎥[100],没有这个就可以了
还是同一题。回答对错
1.错。因为A不是方阵,所以detAAT不能看作detAdetATdetAAT不能看作detAdetAT
2.正确。ATAATA可逆的条件是A的列向量独立,即r = n
3.错。AATAAT是半正定的。
还是同一题。问,ATy=cATy=c是否总存在解(且为无穷)?
答案为是。AT为n∗m矩阵AT为n∗m矩阵,之前有r = n,因此总是存在解,而m - r > 0,所以自由变量个数大于0,有无穷个解
第二题
看到这题,我笑了~
同样是这题。问,如果v1−v2+v3=0v1−v2+v3=0,解是否不唯一?
是。因为v1 - v2 + v3 = 0,所以列向量不独立,所以零空间解不唯一
同样是这题。如果v1,v2,v3正交v1,v2,v3正交,v1和v2的线性组合产生的向量什么时候离v3最近。
0∗v1+0∗v20∗v1+0∗v2
第三题(马尔科夫矩阵)
经过观察,A的列向量非独立,因此λ1=0λ1=0,而马尔科夫矩阵有λ2=1λ2=1,因此可得λ3=trace−λ−1−λ2=−0.2λ3=trace−λ−1−λ2=−0.2
uk=Ak⎡⎣⎢0100⎤⎦⎥=c1λk1x1+c2λk2x2+c3λk3x3uk=Ak[0100]=c1λ1kx1+c2λ2kx2+c3λ3kx3
c∞=c2x2c∞=c2x2
x2=⎡⎣⎢334⎤⎦⎥x2=[334]
需要注意的一点是,以人口迁徙类比,马尔科夫矩阵无论变换多少次,人口总数不变,因此c2=1c2=1
第四题
实际上是两个问题。
1.求出a的投影矩阵。直接套公式
2.给出特征值和特征向量,求A。也是套公式,A=SΛS−1(需要注意的是,什么时候能套?是因为特征向量独立)A=SΛS−1(需要注意的是,什么时候能套?是因为特征向量独立)
第五题
什么情况下,A对任意B,不满足A=BTBA=BTB
因为BTBBTB为对称矩阵,因此A为非对称矩阵
第六题
哪些矩阵非对称,其特征向量正交?
1.反对称矩阵
2.
[cossin−sincos][cos−sinsincos](旋转矩阵)
以上两类矩阵的特征向量都为复特征向量
第七题(最小二乘)
终于完了,好漫长啊~老师讲的非常好,强烈推荐!!!