MIT线性代数笔记-第三十四讲

本文总结了线性代数期末复习的关键知识点,包括矩阵的性质、特征值与特征向量、正交性、马尔科夫矩阵、最小二乘法等。通过具体例题解析,帮助学生掌握核心概念及其应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

期末复习课,也是通过习题

第一题

这里写图片描述
由于
Ax=100Ax=[100]无解,得知r < m

Ax=010Ax=[010]有一个解,得知r = n,综合可得m = 3 > n = r

A的一个可能解:
这里写图片描述
010[010]放进来,然后注意
100[100],没有这个就可以了

还是同一题。回答对错
这里写图片描述
1.错。因为A不是方阵,所以detAATdetAdetATdetAAT不能看作detAdetAT
2.正确。ATAATA可逆的条件是A的列向量独立,即r = n
3.错。AATAAT是半正定的。

还是同一题。问,ATy=cATy=c是否总存在解(且为无穷)?
答案为是。ATnmAT为n∗m矩阵,之前有r = n,因此总是存在解,而m - r > 0,所以自由变量个数大于0,有无穷个解

第二题

这里写图片描述

看到这题,我笑了~
同样是这题。问,如果v1v2+v3=0v1−v2+v3=0,解是否不唯一?
是。因为v1 - v2 + v3 = 0,所以列向量不独立,所以零空间解不唯一

同样是这题。如果v1,v2,v3v1,v2,v3正交,v1和v2的线性组合产生的向量什么时候离v3最近。
0v1+0v20∗v1+0∗v2

第三题(马尔科夫矩阵)

这里写图片描述

经过观察,A的列向量非独立,因此λ1=0λ1=0,而马尔科夫矩阵有λ2=1λ2=1,因此可得λ3=traceλ1λ2=0.2λ3=trace−λ−1−λ2=−0.2

uk=Ak0100=c1λk1x1+c2λk2x2+c3λk3x3uk=Ak[0100]=c1λ1kx1+c2λ2kx2+c3λ3kx3
c=c2x2c∞=c2x2

x2=334x2=[334]

需要注意的一点是,以人口迁徙类比,马尔科夫矩阵无论变换多少次,人口总数不变,因此c2=1c2=1

第四题

这里写图片描述
实际上是两个问题。
1.求出a的投影矩阵。直接套公式
2.给出特征值和特征向量,求A。也是套公式,A=SΛS1?A=SΛS−1(需要注意的是,什么时候能套?是因为特征向量独立)

第五题

什么情况下,A对任意B,不满足A=BTBA=BTB
因为BTBBTB为对称矩阵,因此A为非对称矩阵

第六题

哪些矩阵非对称,其特征向量正交?
1.反对称矩阵
2.
[cossinsincos][cos−sinsincos](旋转矩阵)
以上两类矩阵的特征向量都为复特征向量

第七题(最小二乘)

这里写图片描述

终于完了,好漫长啊~老师讲的非常好,强烈推荐!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值