【NOIP2017普及组正式赛】棋盘

本文介绍了一个简单的棋盘路径寻找问题,并通过深度优先搜索(DFS)结合记忆化的方法来解决该问题。利用特定的方向数组遍历棋盘上的每个位置,同时记录已经探索过的状态以避免重复计算。
此题依旧简单,用一个深搜+记忆化就可以AC了!
   var
        way:array[1..4,1..2] of longint=((1,0),(0,1),(-1,0),(0,-1));
        a,zx:array[0..101,0..101] of longint;
        m,n,i,j,x,y,k,ans:longint;
procedure dg(x,y,s:longint);
var
        i,j,xx,yy,x2,y2:longint;
begin
        if s>=zx[x,y] then exit
        else zx[x,y]:=s;
        if (x=m) and (y=m) then
        begin
                if ans>s then ans:=s;
                exit;
        end;
        for i:=1 to 4 do
        begin
                xx:=x+way[i,1];
                yy:=y+way[i,2];
                if (xx>=1) and (yy>=1) and (xx<=m) and (yy<=m) then
                begin
                        if a[xx,yy]=maxlongint then
                        begin
                                if (xx=m) and (yy=m) then dg(xx,yy,s+2);
                                for j:=1 to 4 do
                                begin
                                        x2:=xx+way[j,1];
                                        y2:=yy+way[j,2];
                                        if (x2>=1) and (y2>=1) and (x2<=m) and (y2<=m) then
                                        begin
                                                if a[x2,y2]<>maxlongint then
                                                begin
                                                        if a[x2,y2]<>a[x,y] then dg(x2,y2,s+3)
                                                        else dg(x2,y2,s+2);
                                                end;
                                        end;
                                end;
                        end else if a[x,y]<>a[xx,yy] then dg(xx,yy,s+1)
                        else dg(xx,yy,s);
                end;
        end;
end;
begin
        assign(input,'chess.in');reset(input);
        assign(output,'chess.out');rewrite(output);
        for i:=0 to 101 do
                for j:=0 to 101 do
                begin
                        a[i,j]:=maxlongint;
                        zx[i,j]:=maxlongint;
                end;
        readln(m,n);
        for i:=1 to n do
        begin
               read(x,y,k);
               a[x,y]:=k;
        end;
        ans:=maxlongint;
        dg(1,1,0);
        if ans=maxlongint then writeln(-1)
        else writeln(ans);
        close(input);
        close(output);
end.
### NOIP 2017 普及组棋盘问题的 Java 实现与解题思路 #### 问题分析 NOIP 2017 普及组中的棋盘问题是典型的动态规划问题。题目通常涉及在一个 n×m 的棋盘上,计算从起点到终点的不同路径数,同时可能需要避开某些障碍物或特定位置。 对于此类问题,可以采用二维数组 `dp[i][j]` 来存储到达每个格子 `(i, j)` 的方法总数。状态转移方程基于前一时刻的状态来更新当前状态。如果某个格子有障碍,则该格子的方法数为零;如果没有障碍,则可以通过上方或者左方的格子移动过来[^5]。 #### 动态规划的核心思想 动态规划是一种通过把原问题分解为相对简单的子问题的方式来求解复杂问题的方法。在此类棋盘问题中,核心在于定义好状态以及如何由已知状态推导未知状态: - **状态定义**: 设定 `dp[i][j]` 表示到达第 i 行第 j 列这个格子的所有不同路径数目。 - **初始条件**: 起始点 (通常是左下角) 方法数设为 1 (`dp[0][0]=1`)。 - **边界处理**: 如果某一行的第一列无法直接从前一列走过去(比如遇到障碍),则后续所有依赖此路径的部分都应置为不可达。 - **状态转移方程**: - 若当前位置无阻碍: \[ dp[i][j] = dp[i-1][j] + dp[i][j-1] \] - 若当前位置受阻塞: \[ dp[i][j] = 0 \] #### Java 实现代码 以下是针对上述描述的一个简单实现版本: ```java import java.util.Scanner; public class ChessboardProblem { public static void main(String[] args){ Scanner sc=new Scanner(System.in); int n=sc.nextInt(); // rows int m=sc.nextInt(); // columns boolean[][] obstacleMap=new boolean[n][m]; long[][] dp=new long[n][m]; // Input obstacles' positions and mark them as true in the map. while(sc.hasNextInt()){ int x=sc.nextInt(); int y=sc.nextInt(); if(x>=0 && x<n && y>=0 && y<m){ obstacleMap[x][y]=true; } } // Initialize first cell dp[0][0]=(obstacleMap[0][0])?0:1; // Fill DP table for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ if(obstacleMap[i][j]){ dp[i][j]=0; continue; } if(i>0){ dp[i][j]+=(dp[i-1][j]);} if(j>0){ dp[i][j]+=(dp[i][j-1]);} // To prevent overflow use modulo operation when necessary dp[i][j]%=1_000_000_007L; } } System.out.println(dp[n-1][m-1]); } } ``` #### 注意事项 在实际编程过程中需要注意一些细节问题,例如输入数据范围、是否存在越界访问等情况。此外,在大规模数据场景下还需要考虑性能优化措施,如空间压缩技术等[^6]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值