李宏毅:Life Long Learning

本文探讨了Life-Long Learning(终身学习)与Transfer Learning的区别,聚焦于防止Catastrophic Forgetting并通过Selective Synaptic Plasticity和额外神经资源分配方法。研究了如何通过设置重要参数守卫和动态调节来应对任务迁移中的记忆问题,如GEM(Gradient Episodic Memory)和Progressive Neural Networks等策略。同时涉及了数据生成和模型扩展的方法,如记忆回复和新类增加技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Life Long Learing 也是continual Learning,也是incremental learning

目录

Life-Long Learning  vs  Transfer Learning

Evaluation

Research Directions

Selective Synaptic Plasticity——Regulization Based

Additional Neural Resourcr Allocation

Memory Reply


Life-Long Learning  vs  Transfer Learning

Transfer Learning:在任务一上学到的内容Transfer到任务二,关注点在Task2

Life-Long Learning:学完Task2以后Task1还能否work

Evaluation

Research Directions

Selective Synaptic Plasticity——Regulization Based

Forget的原因:白色——loss越大,蓝色——loss越小,先让模型训练task1,随机训练的参数θ0,然后使用梯度下降的方法调整θ0的参数,得到θb。将θb的参数迁移到Task2,继续训练得到θ*。将θ*应用于task1发现loss变大,说明出现了forget现象。如果将θb往右移是否在task1上效果更好呢?(往右移也是蓝色区域)

basic idea:对先前任务重要的一些参数不要改变,只需要调整不重要的参数。

\theta^b 是先前任务学习到的参数,对每一个参数 \theta_{i}^b 设置一个守卫 b_{i} ,代表该参数对过去的任务是否重要。\theta_{i} 指的是将要被此任务学习得到的参数,下式为改写后的loss function,第二个式子表示该参数的重要程度:

L{}'(\theta )=L(\theta)+\lambda \sum_{i}b_{i}(\theta_{i}-\theta_{i}^b)^2

if\quad b_{i}=0,\quad there \quad is\quad no \quad constraint \quad on\quad\theta_{i}    ——catastrophic forgetting

if\quad b_{i}=\infty,\quad \theta_{i} \quad would\quad always \quad be \quad equal\quad to\quad \theta_{i}^b ——instransigence

如何设置 b_{i}?

\theta_{1} 方向上loss变化很小,b1很小;\theta_{2} 方向上loss变化比较大,b2较大。

 Gradient Episodic Memory (GEM)

 通过存少量资料updata direction。

Additional Neural Resourcr Allocation

Progressive Neural Networks

只训练当前模型的参数,只是将前面模型的参数作为输入,缺点:占用过多额外空间。

PackNet:开一个大的网络但每次task只占用其中一部分,参数保留一小部分

CPG:结合上述两种方法,既进行参数的dropout,也开辟网络空间

Memory Reply

Generating data

生成先前任务的学习资料来用于现在任务的训练。

 增加新class方法: