Python爬虫-爬取百度指数之需求图谱近一年数据

前言

本文是该专栏的第51篇,后面会持续分享python爬虫干货知识,记得关注。

百度指数,对于接触SEO领域项目或者频繁跟搜索热词打交道的同学来说,并不陌生。而百度指数是基于百度搜索引擎的海量数据,对网民搜索行为进行统计分析后得出的数值。其对市场销售人员来说,在市场趋势分析,目标客户定位,品牌推广等等领域非常有帮助;对市场研究人员来说,在社会热点研究,行业研究辅助等等领域也非常有帮助。

而本文,笔者将以百度指数平台为例子,基于Python爬虫实现获取“近一年的百度指数需求图谱”数据。

那利用Python对此要如何实现呢?具体细节部分以及详细思路逻辑,笔者将在正文结合完整代码进行详细说明。(附带完整代码)

正文

地址:aHR0cHM6Ly9pbmRleC5iYWlkdS5jb20vdjIvaW5kZXguaHRtbCMv

目标:基于Python爬虫,爬取近一年的“百度指数需求图谱”数据


1. 相关依赖库安装

在准备工作开始之前,需要提前安装好本文要用到的相关依赖库。如下所示:

requests
<
<think>嗯,用户问的是如何设计一个基于Web的旅游推荐系统的毕设进程。首先,我需要理解这个问题的各个层面。用户可能是一个计算机科学或相关专业的学生,正在规划毕业设计。他们需要的是一个结构清晰、分阶段的进程安排,帮助他们从零开始完成这个项目。 首先,我应该考虑毕设通常的时间安排,比如半年或一年,分阶段进行。然后,每个阶段需要有哪些关键任务。可能包括需求分析、技术选型、数据收集、系统设计、开发实现、测试优化、文档撰写和答辩准备等。 接下来,要确保每个阶段的任务具体且可行。比如需求分析阶段,用户可能需要做市场调研和用户访谈,明确系统的目标用户和核心功能。技术选型部分,需要考虑前端、后端、推荐算法以及数据库的选择,这时候可能需要比较不同技术的优缺点,比如用Python的Django还是Flask,推荐算法用协同过滤还是深度学习模型。 数据收集和处理是关键的一环,特别是对于推荐系统来说。可能需要爬取旅游数据,或者使用公开数据集,然后进行清洗和结构化。这里要提醒注意法律法规,比如爬虫的合规性。 系统设计阶段需要分模块,比如用户模块、推荐模块、交互模块等,每个模块的详细设计。开发实现时,分前后端和算法部分,可能需要用React或Vue做前端,Django或Spring Boot做后端,算法部分可能需要机器学习库如scikit-learn或TensorFlow。 测试和优化阶段要注重用户体验和推荐效果,可能用A/B测试,同时优化系统的响应速度。最后是文档和答辩,这部分容易被忽视,但很重要,需要规范撰写和准备演示材料。 还要考虑用户可能的深层需求,比如如何突出创新点,可能是在推荐算法上结合多种策略,或者加入实时推荐、社交功能等。同时,提醒注意时间管理和代码版本控制,这些对毕设的成功完成很关键。 总的来说,需要将整个进程分解成逻辑清晰的阶段,每个阶段有明确的任务和产出,帮助用户有条不紊地推进项目,避免后期出现重大问题。同时,提供一些实用建议,比如参考类似系统、注重数据质量、平衡复杂度等,能增加回答的价值。</think>以下是一个分阶段的基于Web的旅游推荐系统毕业设计进程建议,包含技术实现关键点和创新方向: --- ### **一、需求分析与技术调研(2-3周)** 1. **需求定义** - 市场调研:分析现有旅游平台(如TripAdvisor、马蜂窝)功能 - 用户访谈:明确目标用户群体(如背包客/家庭游/商务出行) - 核心功能规划:$$ \text{推荐系统} = f(\text{用户画像}, \text{景点特征}, \text{上下文因素}) $$ 2. **技术选型** - 前端框架:React/Vue.js(可视化交互) - 后端框架:Django/Spring Boot(建议用Python便于算法实现) - 推荐算法:协同过滤/内容推荐/混合模型 - 数据库:MySQL(用户数据)+ Redis(缓存)+ Neo4j(景点关系图谱--- ### **二、数据采集与处理(3-4周)** 1. **数据来源** - 爬虫获取:景点数据(携程/飞猪)+ 用户评论(注意合规性) - 开放数据集:Kaggle旅游数据- 模拟数据生成(若真实数据不足) 2. **数据处理** - 数据清洗:$$ \text{去噪} = \text{正则表达式} + \text{停用词过滤} $$ - 特征工程: ```python # 示例:景点特征向量化 attractions = { 'tags': TF-IDF(text), 'coordinates': GeoHash(lat, lng), 'price': MinMaxScaler() } ``` --- ### **三、系统设计与算法开发(6-8周)** 1. **架构设计** ``` [用户端] --HTTP--> [推荐引擎] <---> [数据库] ↑ [机器学习模型] ``` 2. **推荐算法实现** - 基础算法: - 协同过滤:$$ \hat{r}_{ui} = \bar{r}_u + \frac{\sum_{v \in N(u)} w_{uv}(r_{vi} - \bar{r}_v)}{\sum_{v \in N(u)} |w_{uv}|} $$ - LDA主题模型(处理文本评论) - 进阶方向: - 时空约束推荐:$$ \max \sum \frac{\alpha}{距离} + \frac{\beta}{评分} $$ - 深度学习:使用Transformer处理用户行为序列 --- ### **四、系统开发与测试(4-6周)** 1. **模块开发** - 用户模块:注册/登录/历史行为记录 - 推荐模块: - 实时推荐(Flask异步API) - 离线推荐(每日批量计算) - 交互模块:地图可视化(Leaflet.js)+ 行程规划器 2. **测试重点** - 推荐准确率:$$ Precision@K = \frac{\text{命中数}}{K} $$ - 响应时间:压力测试(JMeter) - 用户体验:A/B测试界面设计 --- ### **五、文档与答辩准备(2-3周)** 1. **文档撰写** - 系统架构图(使用PlantUML) - 算法对比实验(精确率/召回率曲线) - 创新点说明(如结合天气API动态调整推荐) 2. **演示系统构建** - Docker容器化部署 - 制作系统演示视频(重点展示推荐逻辑) --- ### **创新方向建议** 1. 多模态推荐:结合图片分析(CNN提取景点图像特征) 2. 可解释性推荐:生成自然语言解释(如"推荐故宫因为您喜欢历史") 3. 可持续旅游推荐:加入碳排放计算因子 4. AR集成:通过手机摄像头识别场景推荐周边景点 --- ### **注意事项** 1. 使用Git进行版本控制(建议每天commit) 2. 算法模块与业务逻辑解耦 3. 注重数据隐私保护(GDPR合规) 4. 准备备选方案(如公开API失效时的应急策略) 建议每周记录开发日志,定期与导师同步进度。可参考《推荐系统实践》(项亮著)获取算法实现细节,使用Postman管理API接口测试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

写python的鑫哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值