时间复杂度

本文深入探讨了程序设计的两大基石——数据结构与算法,解析了时间复杂度和空间复杂度的概念,以及它们在算法优化中的作用。通过对比不同时间复杂度的优劣,帮助读者理解如何选择最优算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据结构

程序设计 = 数据结构 + 算法

时间复杂度

O(n)也可称为大O阶
T(n) = O(f(n));
f(n)是问题规模n的某个函数;
一般情况下,随着输入规模n的增大,T(n)增长最慢的为最优算法。
求解方法:

  1. 用常数取代运行时间中的所有加法常数;
  2. 在修改后的运行次数中,只保留最高阶项;
  3. 如果最高阶项存在且不是一,则除去与他相乘的常数;
  4. 得到的即为大O阶。
时间复杂度的大小比较:

O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)

空间复杂度

S(n) = O(f(n))
n为问题的规模,f(n)为语句关于n所占空间的函数。
通常,我们都是用“时间复杂度”来指运行时间的需求,用“空间复杂度”来指空间需求。(感觉看字面就能理解,不知道为什么总爱考概念)