Information Fusion 2025 | 揭秘AHF-U-Net与其不确定性感知版本

        在医学图像分割的世界里,精准与信任同样重要。一张图像的分割结果可能直接影响医生的诊断,而如果AI模型本身无法说明“它有多确定”,我们又如何放心依赖它呢?近日发表于 Information Fusion 期刊的研究《Attention-guided hierarchical fusion U-Net for uncertainty-driven medical image segmentation》提出了一种创新的方法——AHF-U-Net,并进一步构建了其不确定性感知版本UA-AHF-U-Net,为“可信AI医学图像分割”打开了新路径。


🎯 为什么这项研究值得关注?

传统的医学图像分割模型,如经典的U-Net及其衍生版本(U-Net++、U-Net 3+),虽取得了很好的分割性能,但大多忽视了一个关键问题:模型是否对自己的判断有信心?

本研究提出的AHF-U-Net不仅追求更高的分割精度,还通过引入注意力机制(attention)和不确定性量化(uncertainty quantification),构建了一个更

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程日记✧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值