在医学图像分割的世界里,精准与信任同样重要。一张图像的分割结果可能直接影响医生的诊断,而如果AI模型本身无法说明“它有多确定”,我们又如何放心依赖它呢?近日发表于 Information Fusion 期刊的研究《Attention-guided hierarchical fusion U-Net for uncertainty-driven medical image segmentation》提出了一种创新的方法——AHF-U-Net,并进一步构建了其不确定性感知版本UA-AHF-U-Net,为“可信AI医学图像分割”打开了新路径。
🎯 为什么这项研究值得关注?
传统的医学图像分割模型,如经典的U-Net及其衍生版本(U-Net++、U-Net 3+),虽取得了很好的分割性能,但大多忽视了一个关键问题:模型是否对自己的判断有信心?
本研究提出的AHF-U-Net不仅追求更高的分割精度,还通过引入注意力机制(attention)和不确定性量化(uncertainty quantification),构建了一个更