题目:带冲突关系的0-1背包问题
给定:
- 一个背包,最大承重为 W。
- n 个物品,每个物品有重量 w_i 和价值 v_i。
- m 对物品之间存在冲突关系,若两个物品存在冲突关系,则这两个物品不能同时被选入背包。
目标:
在不超过背包承重的前提下,选择一组物品,使得总价值最大化,并且所选物品之间没有冲突关系。
输入格式:
n W
w1 v1
w2 v2
...
wn vn
m
a1 b1
a2 b2
...
am bm
输入要求:
- 第一行包含两个整数 n(1 ≤ n ≤ 20)和 W(1 ≤ W ≤ 10^9)。
- 接下来的 n 行,每行包含两个整数 wi 和
vi,分别表示第 i 个物品的重量和价值。 - 第 n+2 行包含一个整数 m,表示冲突关系的数量。
- 接下来的 m 行,每行包含两个整数 ai 和 bi,表示物品 ai 和物品 bi 之间存在冲突关系。
输出格式:
- 输出一个整数,表示在满足条件下的最大总价值。
//示例
//输入
4 10
5 10
4 40
6 30
3 50
2
1 2
3 4
//输出
90
这是一道结合了0-1背包问题和图论中的独立集问题的混合型问题。标准的0-1背包问题只考虑物品的重量和价值,但本题增加了物品之间的冲突关系,使得选择物品的组合不仅要满足重量限制,还需要保证所选物品之间没有冲突。
由于物品数量 n 较小(n ≤ 20),我们可以采用状态压缩动态规划的方法,通过位掩码(bitmask)来表示物品的选择状态,从而高效地处理冲突关系。
使用一个 n 位的二进制数来表示物品的选择状态。例如,状态 mask 的第 i 位为1表示选择了第 i 个物品,为0表示未选择。
为了快速判断两个物品是否存在冲突,可以使用一个大小为 n 的数组 conflict,其中 conflict[i] 是一个位掩码,表示与物品 i 冲突的所有物品。例如,如果物品1与物品2和物品3存在冲突,则 conflict[1] = (1<<2) | (1<<3)。
定义 dp[mask] 为选择状态为 mask 时的最小总重量。初始状态 dp[0] = 0(不选择任何物品,重量为0),其他状态初始化为无穷大。
对于每一个状态 mask,尝试添加一个未被选择的物品 i,前提是:
- 物品 i 未被选择(即 mask & (1 << i) 为0)。
- 物品 i 不与当前选择的任何物品冲突(即 conflict[i] & mask 为0)。
- 添加物品 i 后的总重量不超过 W。
如果满足以上条件,则更新 dp[mask | (1 << i)] 为 dp[mask] + w_i,取最小值。
最后遍历所有可能的 mask,对于满足 dp[mask] ≤ W 的状态,计算对应的总价值,取其中的最大值即为答案。
完整C++解题代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;