bzoj 1296 & 洛谷4158 [SCOI2009]粉刷匠 题解

这篇博客解析了bzoj 1296 和 洛谷4158 [SCOI2009]粉刷匠题目,通过动态规划(DP)策略求解。博主详细介绍了如何设置状态f[i][j]和g[i][j][k],以及它们之间的转移关系。通过枚举染色区间和考虑当前位置,确定了O(nm^3)的时间复杂度,确保算法能在限制时间内完成计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意简述

一个n×mn\times mn×m的矩阵,每个位置珂能是粉色(0表示)或者是蓝色(1表示),然后你珂以对同一行里连续一段长度的区间染上一种颜色(覆盖型),你能染ttt次,每次不限长度。求你染到的正确的颜色的个数最多是多少。

思路框架

f[i][j]f[i][j]f[i][j]表示前iii行染jjj次最大染色个数。g[i][j][k]g[i][j][k]g[i][j][k]表示第iii行染jjj次只考虑前kkk个格子最大方案。

具体思路

DPDPDP题分两步,设状态,求转移。

多数题目是状态不好设的。像这个题就是,我想了好久没想出来状态怎么设,看一下题解知道状态怎么设之后就是秒切。那么,我们这个题也是分两块来讲。

Part 1. 状态

首先fff是很好想的。答案就是f[n][i](i∈[1,t])f[n][i] (i\in [1,t])f[n][i](i[1,t])中的最大值。

然后我们来求f[i][j]f[i][j]f[i][j]的转移。求着求着发现,我们先要枚举一个kkkkkk小于jjj。转移的一部分就是f[n−1][j−k]f[n-1][j-k]f[n1][jk],就是上一行染j−kj-kjk次。还有kkk次留给这一行。所以我们要加上一个数,这个数就是:第iii行中染kkk次正确染色的最大值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值