PyCharm如何配置已经安装好的Anaconda中的TensorFlow

配置Python

在PyCharm中,我们知道ython在“File → Settings → Python Interpreter”,点击齿轮进行添加我们安装好的Python的".exe"文件。

配置Anaconda中的Tensorflow

此时我们如果不用TemsorFlow,就像很多博客中讲到的,直接就把Anaconda中的python.exe选择即可,如图所示。
直接使用Anaconda的Python文件
但是如果安装好了TensorFlow并且想要使用,我们需要进入到Anaconda目录下的envs,再进入envs目录中的tensorflow找到里面的python.exe文件,如图所示。
Anaconda里envs里的tensorflow里的python.exe
这样就可以使用了。

直接使用import tensorflow as tf检验一下就可以了。

成功导入tensorflow
这是我的测试代码:

import tensorflow as tf
# tensorflow的2.0版本
# 原因是2.0与1.0版本不兼容,在程序开始部分添加以下代码:
tf.compat.v1.disable_eager_execution();
hello = tf.constant('Hello, TensorFlow!');
test = tf.constant('Hello, World!');
# tensorflow2.0版本中的确没有Session这个属性,
# 如果安装的是tensorflow2.0版本又想利用Session属性,可以将tf.Session()更改为:
sess = tf.compat.v1.Session(); #这个方法可以解决此类问题,不仅仅适用于Session属性。
print(sess.run(hello));
#输出会带一个 b,表示字符串,下面的方法则可以去掉从而直接显示字符串的内容。
print(sess.run(test).decode());
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值