一、赛事核心信息
近日,Kaggle 上线由日本三井物产(全球 500 强、大宗商品贸易头部企业)主办的量化竞赛,聚焦多市场价差序列预测,优胜方案将直接整合至其全球交易系统。作为量化领域的高含金量赛事,本次竞赛兼具技术挑战性与行业落地价值,值得金融工程、AI、统计背景从业者重点关注。
二、为什么值得参赛?
1. 主办方背景与行业分量
三井物产作为全球大宗商品贸易 TOP 级玩家,业务覆盖金属、能源、农产品等核心领域,本次竞赛的优胜方案将服务其 200 + 合作机构,直接对接企业级风控与交易需求。赛事背书不仅是技术能力的证明,更是进入大宗商品量化圈的 “敲门砖”。
2. 赛题硬核挑战:对标真实业务场景
竞赛核心任务是预测 424 个价差序列,数据覆盖多市场多品类:
- 市场维度:LME(伦敦金属交易所)金属数据、JPX(日本交易所集团)商品数据、美股、外汇市场;
- 技术难点:需解决跨市场数据时区断层(如 LME 与 JPX 交易时段差异)、多品类数据对齐、政策突变等 “黑天鹅” 事件对模型的冲击;
- 评价指标:采用改进夏普比率(兼顾抗异常值能力与长期稳定性),直接对标量化交易实盘要求。
3. 职业发展与资源倾斜
- 冠军团队将直接进入三井物产人才计划,获职业推荐;
- 全球前 15 名团队获邀加入三井贸易研究网络,对接 200 + 机构资源;
- 参赛经历写入简历,成为量化岗(尤其是大宗商品、跨境交易领域)的核心竞争力。
三、参赛能掌握哪些核心技能?
- 高阶时序建模:实战 Transformer、LSTM 等模型在多市场波动场景下的优化,提升对非平稳序列的预测能力;
- 跨境数据处理:解决 LME(伦敦时区)与 JPX(东京时区)交易数据的时间对齐问题,掌握多时区数据融合技巧;
- 宏观因子工程:解析美元汇率、政策变动等宏观因子对大宗商品价格的传导机制,构建更贴近市场逻辑的特征体系;
- 模型鲁棒性优化:针对 “黑天鹅” 事件(如突发政策、地缘冲突)设计抗干扰方案,提升模型在极端场景下的稳定性。
四、参赛门槛与支持
- 组队截止时间:9 月 29 日(7 月 24 日已启动),金融工程、AI、统计背景者优先;
- 提供完整数据沙盒,包含滞后标签解析工具,降低数据预处理门槛;
- 评价指标细节公开,便于针对性优化模型(改进夏普比率侧重长期稳定性,规避短期异常值干扰)。
五、关键时间节点
- 启动时间:7 月 24 日
- 报名截止:9 月 29 日
无论是想积累量化实战经验,还是寻求进入大宗商品交易领域的突破口,本次竞赛都是难得的机会。更多赛题细节(含数据字段说明、评价指标公式)可si~获取,欢迎组队交流技术方案!