A Full Hardware Guide to Deep Learning

https://timdettmers.com/2018/12/16/deep-learning-hardware-guide/#more-121

https://blog.csdn.net/jiangjunshow/article/details/97894631

Conclusion / TL;DR

GPU: RTX 2070 or RTX 2080 Ti. GTX 1070, GTX 1080, GTX 1070 Ti, and GTX 1080 Ti from eBay are good too!


CPU: 1-2 cores per GPU depending how you preprocess data. > 2GHz; CPU should support the number of GPUs that you want to run. PCIe lanes do not matterPCIE通道并不重要.

RAM:
– Clock rates do not matter — buy the cheapest RAM.
Buy at least as much CPU RAM to match the RAM of your largest GPU.
– Buy more RAM only when needed.
More RAM can be useful if you frequently work with large datasets.>=32GB

Hard drive/SSD:
Hard drive for data (>= 3TB)
Use SSD for comfort and preprocessing small datasets.

PSU电源:
Add up watts of GPUs + CPU. Then multiply the total by 110% for required Wattage.
– Get a high efficiency rating if you use a multiple GPUs.
– Make sure the PSU has enough PCIe connectors (6+8pins)

Cooling:
– CPU: get standard CPU cooler or all-in-one (AIO) water cooling solution
– GPU:
– Use air cooling
Get GPUs with “blower-style” fans if you buy multiple GPUs如果购买多个GPU的话使用“鼓风式”的风扇
– Set coolbits flag in your Xorg config to control fan speeds

Motherboard:
– Get as many PCIe slots as you need for your (future) GPUs (one GPU takes two slots; max 4 GPUs per system)

Monitors:
– An additional monitor might make you more productive than an additional GPU.

Update 2018-12-14: Reworked entire blog post with up-to-date recommendations.
Update 2015-04-22: Removed recommendation for GTX 580

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LIQING LIN

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值