泰勒展开式
f(x)=f(x0)+f′(x0)(x−x0)+f′′(x0)2!(x−x0)2+...+f(n)(x0)n!(x−x0)n+f(n+1)(x0+θ(x−x0))(n+1)!(x−x0)n+1(0<θ<1)意义:可用n次多项式来近似表达函数f(x), 且误差是当x→x0 时比(x−x0)n高阶无穷小 \begin{array}{l} \\ f(x) = f(x_0)+f'(x_0)(x-x_0)\\ \\ +{\frac{f''(x_0)}{2!}}{(x-x_0)^2}+...\\ \\ +{\frac{f^{(n)}(x_0)}{n!}}{(x-x_0)^n}\\ \\ +{\frac{f^{(n+1)}(x_0+\theta(x-x_0))}{(n+1)!}}{(x-x_0)^{n+1}} (0<\theta<1)\\ \end{array}\\ {\text{意义:可用n次多项式来近似表达函数f(x), 且误差是当}}x\rightarrow x_0 {\text{ 时比}}(x-x_0)^n{\text{高阶无穷小}} f(x)=f(x0)+f′(x0)(x−x0)+2!f′′(x0)(x−x0)2+...+n!f(n)(x0)(x−x0)n+(n+1)!f(n+1)(x0+θ(x−x0))(x−x0)n+1(0<θ<1)意义:可用n次多项式来近似表达函数f(x), 且误差是当x→x0 时比(x−x0)