LeetCode518. 零钱兑换 II
题目链接:518. 零钱兑换 II - 力扣(LeetCode)
文章讲解:代码随想录
视频讲解:动态规划之完全背包,装满背包有多少种方法?组合与排列有讲究!| LeetCode:518.零钱兑换II_哔哩哔哩_bilibili
思路:这道题应该属于完全背包问题,也就是每一件物品可以取用多次,问有多少种取法。对于这种题和之前的区别主要就是在遍历背包的顺序的一个不同,对于完全背包是从前向后,而对于01背包在遍历背包时是从后向前。这道题dp[i]的含义就是背包大小为i的话,有多少种取数的方法,那么还是和之前一样,累加可能性,如果能取coins[i],那么就加上dp[j-coins[i]]。在创建数组的时候使用uint64_t是因为会有用例超过int的范围。
代码:
class Solution {
public:
int change(int amount, vector<int>& coins) {
vector<uint64_t>dp(amount+1,0);
dp[0]=1;
for(int i=0;i<coins.size();i++){
for(int j=coins[i];j<=amount;j++){
dp[j]+=dp[j-coins[i]];
}
}
return dp[amount];
}
};
LeetCode377. 组合总和 Ⅳ
题目链接:377. 组合总和 Ⅳ - 力扣(LeetCode)
文章讲解:代码随想录
视频讲解:动态规划之完全背包,装满背包有几种方法?求排列数?| LeetCode:377.组合总和IV_哔哩哔哩_bilibili
思路:这道题和之前的不同是这道题属于排列问题,也就是和顺序有关。那么这种题我们的解决思路是把遍历背包和物品的顺序反过来,先遍历背包再遍历物品。这样顺序就不会固定了。
代码:
class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
vector<uint64_t>dp(target+1,0);
dp[0]=1;
for(int j=0;j<=target;j++){
for(int i=0;i<nums.size();i++){
if(j>=nums[i]){
dp[j]+=dp[j-nums[i]];
}
}
}
return dp[target];
}
};
KamaCoder57. 爬楼梯
题目链接:57. 爬楼梯(第八期模拟笔试)
文章讲解:代码随想录
思路:和上一题几乎一模一样,只不过物品从数组变成了连续的数字。
代码:
#include<bits/stdc++.h>
using namespace std;
int main(){
int n,m;
cin>>n>>m;
vector<int>dp(n+1,0);
dp[0]=1;
for(int j=1;j<=n;j++){
for(int i=1;i<=m;i++){
if(j>=i){
dp[j]+=dp[j-i];
}
}
}
cout<<dp[n]<<endl;
}