代码随想录算法训练营第三十七天|LeetCode518. 零钱兑换 II,LeetCode377. 组合总和 Ⅳ,KamaCoder57. 爬楼梯

LeetCode518. 零钱兑换 II

题目链接:518. 零钱兑换 II - 力扣(LeetCode)
文章讲解:代码随想录
视频讲解:动态规划之完全背包,装满背包有多少种方法?组合与排列有讲究!| LeetCode:518.零钱兑换II_哔哩哔哩_bilibili

思路:这道题应该属于完全背包问题,也就是每一件物品可以取用多次,问有多少种取法。对于这种题和之前的区别主要就是在遍历背包的顺序的一个不同,对于完全背包是从前向后,而对于01背包在遍历背包时是从后向前。这道题dp[i]的含义就是背包大小为i的话,有多少种取数的方法,那么还是和之前一样,累加可能性,如果能取coins[i],那么就加上dp[j-coins[i]]。在创建数组的时候使用uint64_t是因为会有用例超过int的范围。

代码:

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        vector<uint64_t>dp(amount+1,0);
        dp[0]=1;
        for(int i=0;i<coins.size();i++){
            for(int j=coins[i];j<=amount;j++){
                dp[j]+=dp[j-coins[i]];
            }
        }
        return dp[amount];
    }
};

LeetCode377. 组合总和 Ⅳ

题目链接:377. 组合总和 Ⅳ - 力扣(LeetCode)
文章讲解:代码随想录
视频讲解:动态规划之完全背包,装满背包有几种方法?求排列数?| LeetCode:377.组合总和IV_哔哩哔哩_bilibili

思路:这道题和之前的不同是这道题属于排列问题,也就是和顺序有关。那么这种题我们的解决思路是把遍历背包和物品的顺序反过来,先遍历背包再遍历物品。这样顺序就不会固定了。

代码:

class Solution {
public:
    int combinationSum4(vector<int>& nums, int target) {
        vector<uint64_t>dp(target+1,0);
        dp[0]=1;
        for(int j=0;j<=target;j++){
            for(int i=0;i<nums.size();i++){
                if(j>=nums[i]){
                    dp[j]+=dp[j-nums[i]];
                }
            }
        }
        return dp[target];
    }
};

KamaCoder57. 爬楼梯

题目链接:57. 爬楼梯(第八期模拟笔试)
文章讲解:代码随想录

思路:和上一题几乎一模一样,只不过物品从数组变成了连续的数字。

代码:

#include<bits/stdc++.h>
using namespace std;
int main(){
    int n,m;
    cin>>n>>m;
    vector<int>dp(n+1,0);
    dp[0]=1;
    for(int j=1;j<=n;j++){
        for(int i=1;i<=m;i++){
            if(j>=i){
                dp[j]+=dp[j-i];
            }
        }
    }
    cout<<dp[n]<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值