AI - Transformer架构工作原理

一、概述

Transformer是由Vaswani等人在2017年提出的一种基于自注意力机制(Self-Attention Mechanism)的深度学习网络架构的大模型,被广泛应用于自然语言处理(NLP)领域,如机器翻译、文本生成等任务。它摒弃了传统的RNN(循环神经网络)和CNN(卷积神经网络)的结构,通过自注意力机制捕捉输入序列中的长距离依赖关系,从而有效地解决了长序列处理中的梯度消失和梯度爆炸问题。使得信息可以在整个序列中自由流动,从而更好地捕捉到序列内部的复杂模式,让模型能够并行处理输入序列,为我们提供了一种全新的处理序列数据的方法,大大提高了训练速度和模型性能。

二、主要组成

1、编码器(Encoder):

编码器负责将输入序列(如文本)进行编码,将每个词或字转换为一个高维向量表示。编码器由多个相同的层堆叠而成,每层包含两个子层:多头自注意力(Multi-Head Self-Attention)和位置前馈神经网络(Position-wise Feed-Forward Neural Network)。

2、解码器(Decoder):

解码器负责根据编码器的输出预测目标序列。与编码器类似,解码器也由多个相同的层堆叠而成,但每层包含三个子层:多头自注意力、多头注意力(Multi-Head Attention,与编码器的输出进行交互)和位置前馈神经网络。

3、自注意力机制:

自注意力机制允许模型在处理序列时关注输入序列中的任意位置。对于输入序列中的每个元素,自注意力机制计算其与其他所有元素之间的关联程度,并将这些关联程度作为权重,对输入序列进行加权求和,得到一个新的表示。多头自注意力将输入分为多个子空间,分别进行自注意力计算,再将结果拼接起来,从而捕捉到不同层次和方面的信息。
通过计算输入序列中每个元素与其他元素的相似度(权重),实现对序列的动态关注和上下文表示的生成。
多头注意力:将输入分成多个子空间进行并行的自

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值