[tensorflow]softmax_cross_entropy_with_logits 及其···v2 和 sparse_softmax_cross_entropy_with_logits 异同

文章主要对比了 TensorFlow 中三个计算交叉熵函数的异同。相同点是都先计算输入 logits 的 softmax 分类,再算与输入 labels 的交叉熵,结果相同。不同点在于,softmax_cross_entropy_with_logits 已弃用,softmax_cross_entropy_with_logits_v2 的 labels 参数可接受多种形式,sparse_softmax_cross_entropy_with_logits 的 labels 参数接受整数一维形式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、共同点

三者功能都是先计算输入 logits 的 softmax 分类,再计算与输入 labels 之间的交叉熵,最终返回的交叉熵结果相同

2、不同点

(1)softmax_cross_entropy_with_logits

已经弃用,相同功能被 softmax_cross_entropy_with_logits_v2 取代

(2)softmax_cross_entropy_with_logits_v2

labels 参数既可以接受整数形式的一维 labels,如:[0 1 2]

labels 参数也可以接受独热编码形式的 labels,如:

[[1 0 0]
 [0 1 0]
 [0 0 1]]

(3)sparse_softmax_cross_entropy_with_logits

labels 参数接受整数形式的一维 labels,如:[0 1 2];如果训练数据是 one-hots 编码,需要使用 tf.argmax() 将 one-hots 编码形式的类别标签转换为一维整数形式的类别标签,具体操作参考下例

《TensorFlow:实战 Google 深度学习框架》p98 源码中指出“当分类问题只有一个正确答案时,可以使用这个函数加速交叉熵的计算”
---------------------  
作者:csdn-WJW  
来源:CSDN  
原文:https://blog.csdn.net/sdnuwjw/article/details/86086377  
版权声明:本文为博主原创文章,转载请附上博文链接!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值