pytorch RuntimeError: No such operator torchvision::XXX问题解决

博客给出解决方案,即安装torch_scatter和torch_sparse的高版本。涉及Python和PyTorch相关内容,为信息技术领域问题的解决办法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

解决方案:
安装torch_scatter/torch_sparse的高版本

### YoloV7 中 `torchvision::nms` 导致的 `RuntimeError` 解决方案 在处理 YoloV7 的运行过程中,当遇到 `RuntimeError: No such operator torchvision::nms` 错误时,通常是因为 PyTorchTorchVision 版本之间的不兼容所引起的。以下是详细的分析和解决办法: #### 1. **确认 Python 环境** Python 的版本可能会影响依赖库的行为。建议使用支持最新 PyTorchTorchVisionPython 版本(通常是 3.8 或更高)。可以通过以下命令检查并更新 Python 版本: ```bash conda install python=3.9 ``` #### 2. **验证 PyTorchTorchVision 的版本** 错误的核心原因可能是 PyTorchTorchVision 的版本不匹配。可以执行以下代码来查看当前安装的版本: ```python import torch import torchvision print(f"PyTorch version: {torch.__version__}") print(f"TorchVision version: {torchvision.__version__}") ``` 确保两者的版本一致或相互兼容。例如,对于 PyTorch 2.x,推荐使用的 TorchVision 应该是 0.15.x 或以上。 #### 3. **重新安装或升级 TorchVision** 如果检测到 TorchVision 安装缺失或版本较低,可以通过以下方式重新安装或升级: ```bash pip uninstall torchvision pip install torchvision==0.15.2 -f https://download.pytorch.org/whl/torch_stable.html ``` 注意:上述链接中的 `-f` 参数指向官方稳定仓库,确保下载的是与当前操作系统和硬件架构相适配的二进制文件。 #### 4. **检查 CUDA 配置(适用于 GPU 用户)** 如果是基于 GPU 运行模型,还需要确保 CUDA 工具链配置正确。通过以下命令验证 CUDA 是否可用以及其版本号: ```python print(torch.cuda.is_available()) print(torch.version.cuda) ``` 若显示为 `False` 或者 CUDA 版本不符合预期,则需调整环境变量或重装对应版本的 PyTorch/CUDA 组合。 #### 5. **尝试降级至稳定的组合** 有时最新的 PyTorch/TorchVision 可能存在未修复的问题,因此可以选择回退到更成熟的版本组合。比如: - PyTorch 1.13.1 + TorchVision 0.14.1 - PyTorch 1.12.1 + TorchVision 0.13.1 具体操作如下: ```bash pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116 ``` #### 6. **修改源码绕过 NMS 调用** 作为最后手段,可以直接编辑 YoloV7 源码中调用 `torchvision.ops.nms()` 的部分,替换为其纯 PyTorch 实现的方式。例如: ```python def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45): boxes = prediction[..., :4] # xyxy scores = prediction[..., 4] * prediction[..., 5:].max(1)[0] keep_indices = [] while len(scores) > 0: max_idx = torch.argmax(scores).item() keep_indices.append(max_idx) overlap_ious = box_iou( boxes[max_idx].unsqueeze(0), boxes ).squeeze() discard_mask = (overlap_ious >= iou_thres) indices_to_discard = torch.nonzero(discard_mask).view(-1) scores = remove_elements_from_tensor(scores, indices_to_discard) boxes = remove_elements_from_tensor(boxes, indices_to_discard) return keep_indices def remove_elements_from_tensor(tensor, indices): mask = torch.ones_like(tensor, dtype=torch.bool) mask[indices] = False return tensor[mask] ``` 此方法虽然有效,但会增加额外计算开销[^2]。 --- ### 总结 针对 YoloV7 出现的 `RuntimeError: No such operator torchvision::nms` 问题,优先考虑调整 PyTorchTorchVision 的版本一致性;其次可尝试更换适合的 Python/CUDA 环境设置;必要情况下才手动改写非最大抑制逻辑实现自定义替代功能[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值