自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(228)
  • 收藏
  • 关注

原创 为什么让AI洗碗比写诗难百倍?清华教授揭秘具身智能鸿沟

具身智能的征途上,**最精妙的算法或许藏在一个孩子第一次稳稳端起的水杯中**,在厨师翻锅时肌肉的震颤间,在老人跌倒瞬间的自我保护反射里。刘嘉教授指出,核心在于人类智能的**双重架构**——大脑新皮层与小脑的演化时差达**数亿年**当洗碗工在2025年仍能稳居李开复预测的 **“有惊无险”职业榜**,当外卖小哥的运动智慧让AI望尘莫及,我们终于理解刘嘉教授的警世箴言:。”** 刘嘉在实验日志中写道。具身智能(Embodied AI)的核心突破在于:**智能必须通过身体与环境的交互涌现**

2025-07-07 23:40:13 2

原创 医疗AI底层能力全链条工程方案:从技术突破到临床落地

**当DeepSeek在斯坦福评测中超越GPT-4o,当约翰霍普金斯的AI预测出医生看不见的心脏病风险,当河南儿童医院用大模型缩短百万患儿候诊时间——我们终于意识到:医疗AI的底层能力革命,从来不是代码与算法的独角戏,而是一场由技术创新、工程实践与临床智慧共同谱写的交响曲**。- **血栓专科智能体**:融合遗传风险分析(PRS评分)、动态表型监测(PhenoAgeAccel衰老标志物)、实时凝血监控(TAT/PIC指标),预测精度较传统方法提升40%

2025-07-07 23:35:46 181

原创 2025年6月AIGC发展全景:技术轻量化、Agent产业化与伦理新挑战

2025年6月,AIGC领域迎来关键转折点——**模型轻量化**让百亿参数算法飞入寻常设备,**多模态融合**打破文本与视觉的次元壁,而**Agent智能体**正从实验室概念蜕变为产业核心引擎。1. **认知智能升维**:中科院**AlphaAgent**将数学定理证明正确率从72%提升至95%,**神经符号系统**(Neural-Symbolic)融合感知与推理。- **就业重塑**:文案编辑岗位减少,但AI工程师需求激增,2025年智能自动化市场预计达**2486亿美元**

2025-07-06 22:34:57 143

原创 AI+Web3:从自动化工具到自主经济体的范式革命

*Web3与AI的碰撞正在打破这一枷锁**,催生出去中心化的自主智能体(AI Agent),它们拥有数字身份、加密钱包和经济决策权,正从简单的工具进化为真正的链上经济主体。当每个个体都能通过自然语言创建专属智能体,当代码成为法律、数据化为权力,我们迎来的不仅是技术升级,更是人类协作范式的量子跃迁——一个由**23万亿美元市场**支撑的数字文明新形态正在诞生。- 实时决策能力:2023年某DeFi协议的AI集群在ETH波动中实现**年化287%收益**,决策全程由智能合约验证。

2025-07-06 22:29:10 35

原创 量化交易中的隐藏模式识别:基于潜在高斯混合模型的机会挖掘

**挑战** | **创新解法** | **实施效果** |print(f"异常转移!| 胜率 | 68.2% | 51.5% | +32% || **特性** | 传统GMM | LGMM || **指标** | LGMM策略 | 沪深300指数 | 改进幅度 |

2025-07-05 23:50:48 36

原创 AI智能体革命:从对话机器到自主决策的进化之路 **——当AI长出“手和脑”,一场人机协作范式转移正在发生

{"condition": "chest_pain AND shortness_of_breath", "conclusion": "需心脏检查"}result = self.tools.run(step.tool_name, step.params) # 执行工具。| **领域** | 案例 | 经济效益 || **组件** | 传统AI | AI智能体 |

2025-07-05 23:39:05 159

原创 智能自主运动体的革命:当AI学会奔跑与协作 ——从单机定位到群体智能的跨越

U_i = \alpha \cdot \overbrace{R_{path}}^{\text{路径收益}} - \beta \cdot \underbrace{\sum \| P_i - P_j \|}_{\text{碰撞代价}} + \gamma \cdot \overbrace{E_{coop}}^{\text{协同收益}}| **路径规划** | A*算法 | 时空图卷积DRL | 路径平滑度达0.89 |

2025-07-05 16:38:48 29

原创 新能源汽车功率级测试自动化方案:从理论到实践的革命性突破

在这场变革中,先行者正悄然改写行业游戏规则。**自动化测试方案**的诞生犹如一场及时雨。江淮汽车2025年专利显示,其自动化测试系统使单次标定时间从128秒压缩至64秒,**效率提升50%**,同时将人工记录误差从5%降至0.1%以下。当新能源汽车的**电驱系统功率密度突破4kW/kg**,**800V高压平台**成为行业标配,传统测试方法已无法满足产业需求。典型案例显示,某4.5T轻卡电机控制器在50kHz PWM调制下,**开关损耗占总损耗的38%**,这要求测试系统带宽必须>100kHz。

2025-07-04 22:49:56 97

原创 一个“丑萌”玩偶如何成为全球潮流?背后是设计革命与社交经济的完美风暴

明星带货形成**跨圈层穿透力**:从K-POP偶像到欧美巨星,再到泰国王室,Labubu被赋予“**潮流身份证**”属性。- **商业奇迹**:2024年Labubu系列营收**30.4亿元**,同比增长726.6%,占泡泡玛特总营收23.3%。通过**文化符号的在地化重组**,Labubu在各国成为“**国家骄傲载体**”,泰国旅游局甚至将其纳入旅游推广体系。负面评论中,**价格泡沫**(68%)、**品控问题**(22%)、**道德争议**(10%,如X光透视盲盒)成焦点。

2025-07-04 22:42:24 746

原创 人脸活体识别3:C/C++实现实时眨眼、张嘴、点头、摇头检测

std::cout << "检测到张嘴动作" << std::endl;std::cout << "检测到点头动作" << std::endl;std::cout << "检测到摇头动作" << std::endl;{-150.0, -150.0, -125.0}, // 左嘴角。

2025-07-03 19:07:47 412

原创 2025年6月:技术探索与生活平衡的协奏曲

六月最珍贵的发现:**最好的优化算法不是提升效率,而是保持系统弹性**。"data-science") echo "检测到Jupyter笔记本,尝试: jupter notebook";这个月我成功部署了第三代自动化工作流系统,核心创新在于**动态决策树+实时反馈机制**。系统可自主优化处理路径,错误率下降62%!"react-projects") echo "建议运行: npm run dev -- --hot";2. **纸质思维工具包**:包含石墨铅笔+特制笔记本(页面印有代码网格)

2025-07-03 18:19:30 79

原创 基于Apache POI实现百度POI分类快速导入PostgreSQL数据库实战

System.err.println("解析行错误: " + row.getRowNum() + ", 错误: " + e.getMessage());System.err.println("导入失败: " + poi + ", 原因: " + e.getMessage());System.out.println("解析完成!System.out.printf("已导入: %d/%d (%.1f%%)%n",| **优化后批量插入** | **2.1秒** | **18秒** | 中 |

2025-07-02 21:51:29 85

原创 南方大暴雨及洪水数据分析与可视化

近年来,中国南方地区频繁遭受特大暴雨袭击,引发严重洪涝灾害。cities = ['广州', '深圳', '珠海', '佛山', '东莞', '中山', '惠州', '江门', '肇庆', '清远', '韶关', '河源', '梅州', '汕头', '汕尾']labels={'sum': '累计降雨量(mm)', 'mean': '平均降雨量(mm)', 'city': '城市'},strategies = ['预警系统', '排水工程', '河堤加固', '海绵城市', '监测网络', '智慧应急']

2025-07-02 20:31:14 99

原创 深度揭秘FlashTable:AI赋能低代码开发,重塑企业级应用构建范式

这种困境催生了低代码平台的兴起,但传统低代码工具在**复杂业务逻辑**和**Excel公式兼容性**上频频折戟。**这场变革的核心价值在于**:通过AI将开发者从**语法劳动者**解放为**业务架构师**,正如工业机器人解放了流水线工人,让他们转型为产线设计师。// 输出:amount > 10000?// 示例:将"=IF(A2>10000, A2*0.15, A2*0.1)"转化为条件表达式树。> | **评估维度** | **Docker方案** | **Jar包方案** | **适用场景** |

2025-07-01 19:57:39 124

原创 飞算JavaAI:开启智能化新纪元,力臻开发之本真,破 AI 代码之繁琐,传统项目一键生成

飞算JavaAI应运而生,它不仅是代码生成工具,更是**开发理念的革命**,让Java开发者从繁琐中解放,真正专注于创造价值。飞算JavaAI代表着开发工具进化的新方向——**从辅助工具到智能伙伴**的转变。| CRUD接口开发速度 | 4h/个 | 15min/个 | 16x || 缺陷密度 | 15/千行 | 3/千行 | 80%↓ || 指标 | 传统开发 | 飞算JavaAI | 提升幅度 |

2025-07-01 12:52:35 143

原创 当YOLOv10守护蜂巢:用AI之眼洞察蜜蜂健康

通过本文的实践,我们成功将YOLOv10的检测精度提升至95%以上,在嵌入式设备上实现实时蜂群监测。| **YOLOv10** | **96%** | **63** | **¥300** | 全功能检测 |A.RandomShadow(shadow_roi=(0,0.3,1,0.7)), # 模拟蜂箱阴影。A.HoneycombGrid(scale=(0.8, 1.2)), # 添加蜂巢纹理。| **自定义模型** | **95.2** | **23** | **5.8** |

2025-05-23 08:33:31 191

原创 当YOLOv10遇上智能农机:田间避障的黑科技革命

self.obj_loss = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([3.0])) # 提升小目标权重。通过本文的实践,我们成功将YOLOv10的检测速度提升83%,在保持高精度的同时将硬件成本降低60%。| **YOLOv10** | **96%** | **83** | **¥3k** | 全时段工作 |" —— 项目组首席工程师张工。| 模型 | [email protected] | 延迟(ms) | 显存占用(MB) |

2025-05-23 08:25:17 58

原创 深度强化学习实战:基于SAC算法的智能机器人轨迹追踪

本文将带您实现一个基于SAC(Soft Actor-Critic)算法的智能轨迹追踪系统,让机器人学会像专业舞者一样优雅地跟随任意路径。正如OpenAI的科学家所言:"强化学习系统就像需要教导的孩子,既要给予足够的自由探索,又要设置必要的安全边界。**完整代码仓库**:https://github.com/robot-learning-lab/sac-path-tracking。mu = torch.tanh(self.mu_layer(x)) # 输出范围[-1,1]

2025-05-20 08:52:26 92

原创 迁移学习:让AI像人类一样举一反三的智慧引擎

迁移学习正在打破AI领域的"数据霸权",让深度学习从"手工作坊"走向"工业化生产"。或许答案就在迁移学习的魔法之中。**完整项目代码**:https://github.com/transfer-learning-lab/smart-migration。迁移学习通过将已训练模型(源领域)的知识迁移到新模型(目标领域),使目标模型能用更少的数据和计算资源获得更好的性能。1. **负迁移问题**:当源域与目标域差异过大时,迁移可能降低性能。- **数据困境**:80%的优质数据集中在头部企业。

2025-05-20 08:45:55 201

原创 当计算机学会“找不同“:图像相似度测量与模板匹配指南

st.metric("相似度评分", f"{similarity_score}%")print(f"像素相似度:{pixel_similarity(img_a, img_b)}%")| 模板匹配 | 78% | 45fps | 中 | 需多尺度 || SIFT特征 | 88% | 15fps | 优 | 优 || 像素比对 | 65% | 120fps | 差 | 差 || 混合方案 | 95% | 20fps | 优 | 优 || 深度特征 | 92% | 8fps | 优 | 优 |

2025-05-09 08:31:26 275

原创 揭开AI诊断的黑箱:小样本医学影像的可解释深度学习实战

通过本文,您不仅掌握了小样本医学影像分析的核心技术,更获得了打开AI黑箱的钥匙。下次当AI给出诊断建议时,您将能清晰理解它的"思考"过程,做出更明智的医疗决策。本文我们将攻克这两个难题,通过创新性的元学习框架与可视化技术,实现只需20张训练样本即可完成可靠诊断,并让模型自己"说出"诊断依据。医疗AI的可解释性不是终点,而是建立人机信任的起点。[医疗AI诊断场景](https://example.com/medical-ai.jpg)1. **动态原型学习**:每个病理类型自动生成可解释的原型特征。

2025-05-09 08:27:10 93

原创 深度解析语义分割评估指标:从基础到创新实践

现象 | 可能原因 | 解决方案 || 场景描述 | mIoU | BW-IoU | TC-Score || 边界模糊(医疗CT) | 0.72 | **0.81** | 0.68 || 小目标密集(卫星图) | 0.58 | **0.66** | 0.61 || 快速运动(自动驾驶) | 0.65 | 0.63 | **0.79** |

2025-05-08 20:19:02 533

原创 基于Partial Cross Entropy的弱监督语义分割实战指南

在计算机视觉领域,语义分割任务面临最大的挑战之一是**标注成本**。我们的解决方案是设计能够处理**稀疏标注**的损失函数。mask = load_mask(self.mask_paths[idx]) # 标注区域掩码。**思考题**:如何将本方法扩展到视频语义分割场景?1. **标注区域强化阶段**:前5个epoch使用纯partial CE loss。损失函数仅在M=1的位置计算交叉熵,同时通过**置信度加权**处理缺失区域。4. **部分像素标注(Partial labels)** → 本文重点。

2025-05-08 20:16:33 112

原创 SpaCy命名实体识别评估指南:从理论到实战的深度解析

作为Python生态中效率与易用性兼备的NLP利器,SpaCy不仅提供开箱即用的NER功能,更内置了科学的评估体系。本文将带您深入探索SpaCy NER的评估指标、方法论及创新实践,通过2500字的干货分享,让您掌握从模型诊断到性能优化的全流程。本文系统梳理了SpaCy NER的评估体系,从基础指标到创新实践,既提供可直接使用的代码模板,也展望了前沿方向。这个指标衡量的是模型"不犯错"的能力——在金融风险监控场景中,宁可漏报(低召回)也绝不能误报(高精确率)。FN代表漏识别的实体数。

2025-05-06 07:50:14 98

原创 自然语言处理之情感分析:ALBERT在社交媒体的应用技术教程

本文结合**ALBERT轻量化预训练模型**,深入探讨其在社交媒体情感分析中的技术实现与创新应用,并提供完整的代码示例与实战解析。ALBERT(A Lite BERT)通过**参数共享**和**因子分解嵌入投影**两大创新,显著降低了模型参数量。**注释**:通过Hugging Face库加载预训练模型,`albert-base-v2`已内置中文支持,适用于社交媒体文本处理。**注释**:通过微调预训练模型,使ALBERT适应特定领域(如餐饮评论或金融舆情)的情感分析需求。

2025-05-06 07:32:08 384

原创 跨语言信息捕手:基于HMM的多语言命名实体识别实战

而隐马尔可夫模型(HMM)凭借其**数学优雅性**和**跨语言适应性**,在工业界仍保持着独特的生命力。("张三在北京工作", ['B-PER','I-PER','B-LOC','I-LOC','O']),("华为公司位于深圳", ['B-ORG','I-ORG','O','O','B-LOC'])# 输出:['B-PER', 'I-PER', 'O', 'B-LOC', 'I-LOC']# 输出:['B-PER', 'O', 'O', 'O', 'B-ORG']

2025-05-03 09:11:12 175

原创 自然语言处理实战:用CRF打造高精度命名实体识别系统

无论是想快速搭建一个可用的NER系统,还是希望深入理解概率图模型的精髓,CRF都是值得放入工具箱的利器。'prev_is_b-geo': prev_tag == 'B-GEO' # 假设prev_tag是前一个标签。('参观天安门', ['O', 'B-POI', 'I-POI', 'I-POI'])" —— 人工智能先驱吴恩达。- **BiLSTM-CRF**:经典组合,在CoNLL-2003达到91%的F1值。('北京市', ['B-GEO', 'I-GEO', 'I-GEO']),

2025-05-03 09:07:35 2363

原创 自然语言处理之命名实体识别:Bi-LSTM-CRF在信息抽取中的实战革命

而作为NER领域的“黄金搭档”,**Bi-LSTM-CRF模型**凭借其独特的序列建模能力,正在推动信息抽取技术进入工业级应用时代。- **统计模型**:HMM(隐马尔可夫模型)难以捕捉长距离依赖,例如“《三体》作者刘慈欣出席上海书展”中“刘慈欣”与“《三体》”的跨词关联。- **嵌套实体处理**:采用层叠式Bi-LSTM-CRF,先识别“甲方:XX公司”,再提取“注册资本1亿元”中的金额。- **多标签CRF**:支持“机构-事件-影响”复合标签,识别“标普下调特斯拉评级→股价波动”事件链。

2025-04-30 08:38:01 241

原创 自然语言处理之命名实体识别:Bi-LSTM-CRF模型的评估与性能分析

随着深度学习的发展,**Bi-LSTM-CRF**(双向长短期记忆网络结合条件随机场)模型因其强大的序列建模能力成为NER任务的主流方法。NER任务的评估主要依赖**精确率(Precision)**、**召回率(Recall)**和**F1值**。| **领域** | **模型变种** | **F1值** | **提升点** |- **引入对抗训练**:在医学领域,通过对抗训练(如PGD)增强模型鲁棒性,使F1值提升0.47%。

2025-04-30 08:34:42 410

原创 隐马尔可夫模型在命名实体识别中的实战:从古典方法到现代创新

掌握HMM不仅是对历史的致敬,更是打开概率图模型大门的钥匙。P(马云|标签序列) = P(B-PER|O) * P(马|B-PER) * P(I-PER|B-PER) * P(云|I-PER){"text": "北京", "type": "LOC", "start":30, "end":32},{"text": "周杰伦", "type": "PER", "start":9, "end":12},{"text": "马云", "type": "PER", "start":0, "end":2},

2025-04-29 09:19:33 37

原创 零门槛部署Flair实体识别服务:从模型封装到智能增强的全链路实践

"【马斯克】宣布【特斯拉】将推出【Model Q】售价约【$25,000】""【腾讯控股】与【阿里巴巴】于【2024年Q1】达成【5亿美元】合作"- **中文支持**:使用`flair/ner-chinese`模型。1. **批处理尺寸**:根据GPU显存调整(建议32-128)- **领域自适应**:支持自定义Embedding融合。"""使用GPT-4进行实体校验与补充"""- **零样本学习**:支持少样本/零样本实体识别。- **内存泄漏**:定期重启worker进程。

2025-04-29 09:12:33 185

原创 突破语言藩篱:从Seq2Seq到智能翻译的范式革命

在处理德语复合词"Fernweh"(对远方的渴望)时,解码器能动态聚焦于"fern"(遥远)和"Weh"(痛苦)的语义组合,而非简单匹配词典释义。位置编码的创新方案,使模型既能理解"猫追老鼠"的动态时序,又能把握"老鼠追猫"的语义反转。这不是语言的统一,而是理解的升维——在神经网络的隐空间里,人类文明正在编织全新的意义之网。双向编码器的突破进一步释放了模型的上下文理解潜力。当处理"bank"这类多义词时,前向编码捕获"河岸"的物理属性,后向编码识别"金融机构"的经济属性,二者的向量叠加形成精准的语义定位。

2025-04-28 09:03:11 77

原创 注意力机制在低资源机器翻译中的创新突破:从理论到实践的深度探索

**跨语言注意力共享**:利用多语言BERT初始化参数,零样本翻译准确率提升30%- **数据增强注意力**:通过注意力权重引导生成合成数据,使BLEU值提升4-8点。- **领域自适应注意力**:引入领域判别器动态调整注意力分布,术语F1值提升25%- **交互式注意力**:通过用户反馈实时校准注意力焦点,迭代3次后质量趋近人工翻译。- **跨境电商助手**:轻量化注意力模型实现实时对话翻译,客户转化率提升25%- **多粒度注意力**:结合字符级、子词级、词级注意力,OOV问题减少60%

2025-04-28 08:47:43 247

原创 自然语言处理之机器翻译:注意力机制在低资源翻译中的突破与哲思

这种技术繁荣背后的语言殖民现象,迫使我们重新思考:**注意力机制,这个被誉为NLP革命核心的算法模块,能否成为拯救低资源语言的诺亚方舟?或许有一天,当萨米语的"Siida"通过完美的注意力映射呈现在屏幕上时,我们看到的不仅是代码的胜利,更是人类文明在数字时代的重生。我们提出**文化注意力保留机制(CAP)**,通过构建文化关键词的显式注意力通道,使萨米语"Siida"等概念得以完整保留。我们呼吁建立**去中心化的低资源翻译联盟**,通过联邦学习实现技术民主化。这个公式构建了多维语义空间中的"引力场"。

2025-04-27 20:50:17 326

原创 自然语言处理之机器翻译:Statistical Machine Translation(SMT)的评估方法解析与创新实践

然而,翻译质量直接决定了其实际价值,因此**翻译质量评估**成为优化模型、提升用户体验的关键环节。- **阿里“双语专家”模型**:结合Transformer与双向LSTM,通过条件语言模型预测词汇匹配度,实现无参考评估。- **专利诊断方法**:通过词汇级匹配与翻译规则分析,识别错误翻译、未翻译、冗余翻译等类型,并关联系统缺陷(如短语表缺失)。尽管自动指标高效,但人工评估在**语义流畅性**和**领域适应性**上不可替代。- **原理**:基于n-gram匹配,计算机器译文与参考译文的共现词比例。

2025-04-27 20:42:45 196

原创 YOLOv11改进:可变形双级路由注意力(DBRA)——突破注意力机制瓶颈的革新设计

在目标检测领域,YOLO系列始终是技术演进的标杆。2024年10月,Ultralytics推出的YOLOv11凭借**可变形双级路由注意力(Deformable Bi-Level Routing Attention, DBRA)**模块,在关键点检测任务中实现了Pose mAP50从0.871到0.913的暴力涨点,引发业界广泛关注。其在YOLOv11中的成功实践,不仅为实时检测任务提供了新的技术范式,更启示我们:**通过模拟人脑的注意力筛选机制,AI模型能够实现从“看见”到“理解”的质变**。

2025-04-24 08:55:52 219

原创 YOLO11改进:backbone主干改进 | StarNet:超强轻量级Backbone

在实时目标检测领域,模型精度与推理速度的博弈始终是白热化的焦点。当YOLOv11以**56.3 mAP**和**214 FPS**的震撼成绩刷新COCO榜单时,微软却悄然祭出一项颠覆性架构——**StarNet**,用0.7秒延迟在移动端实现73.5%的ImageNet精度。这场看似平行的技术竞赛,实则暗藏着目标检测轻量化的未来密码。本文将深度解构YOLOv11的Backbone改进与StarNet的创新本质,揭示二者融合将如何重塑实时检测的技术版图。## 一、YOLOv11的Backbone革命:从C3到

2025-04-24 08:54:29 490

原创 YOLOv8改进实战 | 注意力篇 | 引入ICCV2023顶会LSKNet:大选择性卷积注意力模块LSKA,助力小目标检测

ICCV2023顶会提出的**LSKNet(Large Selective Kernel Network)**,首次在遥感领域探索大核选择与空间注意力机制的融合,通过动态调整卷积核的尺寸和空间权重,显著提升模型对多尺度目标的适应性。然而,**小目标检测**始终是YOLO系列的痛点——随着网络层数加深,特征图分辨率下降,导致小目标的边缘信息和空间结构严重丢失。LSKNet的核心创新在于**动态感受野调整**与**多尺度特征融合**。

2025-04-23 09:12:09 200

原创 YOLOv5改进实战 | 更换主干网络Backbone之轻量化网络Ghostnet

精度损失 | -1.3 | -2.1 | -1.4 | -2.1 | -1.9 || 模型 | [email protected] | [email protected]:0.95 | 小目标AP | 中目标AP | 大目标AP || 阶段 | 输入尺寸 | 重复次数 | 输出通道数 | 幻影系数s |- **幻影生成**:对每个特征图应用3×3深度可分离卷积,生成s-1个幻影。| 操作类型 | 标准卷积 | Ghost模块 | 压缩比 |

2025-04-23 09:09:38 377

原创 YOLO改进实战:添加SOCA注意力机制提升目标检测性能

SOCA(Second-order Channel Attention)作为一种二阶通道注意力机制,通过捕捉特征的二阶统计信息,显著提升了模型的判别能力。在COCO数据集上,YOLOv5s添加SOCA后,[email protected]提升约1.2%,尤其是在小目标检测(如行人、车辆)中效果显著(如表1)。将上述`Covpool`、`Sqrtm`和`SOCA`类的代码添加到`models/common.py`中,确保模块可被调用。- **协方差计算**:将输入特征图重塑为二维矩阵,计算协方差以表征通道间的相关性。

2025-04-22 08:59:37 334

ASP.NET在线考试系统-计算机函授本科论文.doc

本文设计的在线考试系统是利用微软最新的.net平台,使用B/S结构的模式和ACCESS数据库编写的网络应用程序。其特点是可以便携应用和部署,易于扩展。在符合条件的情况下考生可以通过网络程序进行在线考试并很快获得成绩,由于时间较短,界面没花太多时间进行美化,可以实现基本功能,界面比较单调,目前只能对一科科目进行考试,后续可以增加多种科目。

2024-06-13

简易密码锁设计实验报告

本实验是要设计一个简易密码锁来模拟密码锁的功能。用按键做输入,LED灯做输出。当输入的密码错误时,警报;当密码输入正确,开锁。

2024-06-13

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除