# 深度学习五虎将:当CNN遇见Transformer的奇幻漂流
## 序章:AI江湖的兵器谱排行
2012年,多伦多大学的厨房里,Hinton的学生们用GPU煎了个"AlexNet"荷包蛋,从此开启了深度学习的热兵器时代。如今五大模型各显神通:CNN像外科医生般解剖图像,Transformer化身时间管理大师,BERT成为语言老中医,RNN像写日记的哲学家,GAN则活成了艺术圈的赝品大师。让我们走进这个充满代码诗意的江湖。
---
### 第一章 卷积神经网络(CNN):像素世界的解剖狂魔
#### 1.1 视觉密码破解术
CNN的工作方式如同海关安检:
- **卷积核**:拿着放大镜的安检员(检测边缘、纹理)
- **池化层**:行李压缩神器(保留特征,减小尺寸)
- **全连接层**:最终决策官(综合所有线索分类)
![CNN结构示意图]
(此处可插入LeNet-5经典架构图)
#### 1.2 经典战役实录
- 2012年ImageNet大赛:AlexNet让错误率直降10%(相当于从二本逆袭清北)
- 医学影像诊断:在乳腺癌筛查中达到95%准确率,比实习医生更靠谱
- 自动驾驶:每秒处理60帧图像,比老司机反应快3倍
#### 1.3 致命弱点
- **平移不变性的代价**:无法理解"大象倒立还是大象"的哲学问题
- **通道数的诅咒**:3x3卷积核在4K图像前像用牙签挖隧道
- **空间关系失忆症**:知道鸟有翅膀,但不知道翅膀应该长在背上
---
### 第二章 Transformer:颠覆时空规则的叛逆者<