使用动态规划解决“将数组分成最多 k 个子数组以最大化平均值和”的问题
在这篇博客中,我们将深入探讨一个典型的动态规划问题:如何将一个给定的数组 nums
分成最多 k
个非空子数组,并使得每个子数组的平均值之和最大化。我们将通过详细的分析、解题方法、优化思路以及具体的代码实现来一步步解决这个问题。
题目描述
给定一个整数数组 nums
和一个整数 k
,我们将数组 nums
分成最多 k
个非空子数组,每个子数组内的元素是连续的。我们的目标是最大化所有子数组平均值的和。子数组的平均值是该子数组所有元素和除以子数组的长度。
请注意,题目要求我们使用数组 nums
中的每一个元素,且分组不一定需要是整数。
示例 1
输入:
nums = [9, 1, 2, 3, 9]
k = 3
输出:
20.00000
解释:
最优的分组是 [9]
, [1, 2, 3]
, [9]
,得到的分数为:
9+1+2+33+9=9+2+9=209 + \frac{1 + 2 + 3}{3} + 9 = 9 + 2 + 9 = 20
这是可能的最大分数。