MIT 线性代数 Linear Algebra 25: 对称矩阵的特征值特征向量,正定矩阵

本文探讨了实对称矩阵的特性,指出其特征值均为实数,并能拥有正交的特征向量。通过矩阵的共轭转置性质,证明了特征值的实数性。此外,阐述了所有实对称矩阵可以被相似对角化,形式为正交矩阵与对角矩阵的乘积。这一性质使得矩阵能够用特征值和正交特征向量表示。正定矩阵作为实对称矩阵的一个子类,其所有特征值皆大于零,具有重要的应用价值,如在稳定性分析和系统收敛性判断中起到关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对称矩阵的特征值和特征向量

这一节,我们首先研究一类重要的矩阵,实对称矩阵,的特征值和特征向量。

性质

我们的主要结论是

  • 实对称矩阵的特征值全部是实数。
  • 实对称矩阵可以取到 nnn 个正交的特征实向量。

原因

为什么所有实对称矩阵的特征值全部是实数尼?我们只用对比
Ax=λx    (1)\bm{Ax}=\lambda\bm{x}~~~~(1)Ax=λx    (1)

Ax‾=λ‾x‾    (2)\bm{A\overline{x}}=\overline{\lambda}\overline{\bm{x}}~~~~(2)Ax=λx    (2)

即可,其中下式是上式两边共轭的结果。其实从这里也能看出,任意实矩阵 A\bm{A}A, 如果 λ\lambdaλ 是其特征值,则 λ‾\overline{\lambda}λ 也是它的特征值,他们的特征向量互为共轭

我们还知道 A=A⊤\bm{A}=\bm{A}^\topA=A, 因此由 (2) 有
x‾⊤A=λ‾x‾⊤    (3)\overline{\bm{x}}^\top\bm{A}=\overline{\lambda}\overline{\bm{x}}^\top~~~~(3)xA=λx    (3)

(1) 左乘 x‾⊤\overline{\bm{x}}^\topx, (3) 右乘 x\bm{x}x
x‾⊤Ax=λx‾⊤x\overline{\bm{x}}^\top\bm{Ax}=\lambda\overline{\bm{x}}^\top\bm{x}xAx=λxx

x‾⊤Ax=λ‾x‾⊤x\overline{\bm{x}}^\top\bm{A}\bm{x}=\overline{\lambda}\overline{\bm{x}}^\top\bm{x}xAx=λxx

Since x‾⊤x≠0\overline{\bm{x}}^\top\bm{x}\neq\bm{0}xx=0, 我们有 λ=λ‾\lambda=\overline{\lambda}λ=λ, 即 λ\lambdaλ 是实数。

复数矩阵 A\bm{A}A: 从上面的推导也可以看出,我们其实是在比较 (1) 和 (1) 的共轭转置。 此时,如果 A\bm{A}A 是复数矩阵,我们有
x‾⊤Ax=λx‾⊤x\overline{\bm{x}}^\top\bm{Ax}=\lambda\overline{\bm{x}}^\top\bm{x}xAx=λxx

x‾⊤A‾⊤x=λ‾x‾⊤x\overline{\bm{x}}^\top\overline{\bm{A}}^\top\bm{x}=\overline{\lambda}\overline{\bm{x}}^\top\bm{x}xAx=λxx

所以,如果复矩阵是厄米矩阵 (Hermitian) A=A‾⊤\bm{A}=\overline{\bm{A}}^\topA=A,那它的特征值也全是实数,其中通常我们记作 A‾⊤=AH\overline{\bm{A}}^\top=\bm{A}^HA=AH.

应用

给定上面两点性质,一个重要的结论是所有的实对称矩阵都能被相似对角化
A=QΛQ−1=QΛQ⊤\bm{A=Q}\Lambda\bm{Q}^{-1}=\bm{Q}\Lambda\bm{Q}^\topA=QΛQ1=QΛQ

特别的,对角化所用矩阵是正交矩阵 Q\bm{Q}Q。这有什么好处尼?好处是我们可以把矩阵 A\bm{A}A 直接表示为它的特征值和特征向量:
A=λ1q1q1⊤+λ2q2q2⊤+...+λnqnqn⊤\bm{A}=\lambda_1\bm{q}_1\bm{q}_1^\top+\lambda_2\bm{q}_2\bm{q}_2^\top+...+\lambda_n\bm{q}_n\bm{q}_n^\topA=λ1q1q1+λ2q2q2+...+λnqnqn

其中每一项 qiqi⊤\bm{q}_i\bm{q}_i^\topqiqi 都是一个projection matrix (可以代入性质,对称,幂次方是本身)。每一个对称矩阵都能表示为 nnn 个相互正交的投影矩阵的线性组合

Fact 1: 如果没有 row exchange, 实对称的 pivots乘积等于矩阵的行列式,因此也等于所有特征值的乘积。

Fact 2: 对于实对称矩阵,列出所有的 pivots 和所有的特征值,positive的个数和negative的个数相等。

这一点的用处是,

  1. 我们可以估计特征值的正负,这在differential equations中很有用,因为它决定了系统最终会不会收敛。
  2. 我们可以用 pivots 来估计大于某个数, 比如ddd, 的特征值的个数 (pivots比特征值好算太多太多)。做法就是看矩阵 A−dI\bm{A-dI}AdI pivots 有多少个正数,因为特征值被平移了 ddd.

正定矩阵 positive definite matrix

对称矩阵是一类很好的矩阵,在这个基础上,我们介绍另一类矩阵:正定矩阵。这里我们只介绍一下概念,稍后我们会仔细看这一类矩阵。

前提:实对称矩阵。

要求:所有特征值大于零。

特性:

  1. 所有特征值大于零。
  2. 所有 pivots 大于零。
  3. 所有 nnn 个 子行列式大于零。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值