PyTorch `.pth` 转 ONNX:从模型训练到跨平台部署

PyTorch .pth 转 ONNX:从模型训练到跨平台部署

在深度学习里,模型的格式决定了它的可用性

如果你是 PyTorch 用户,你可能熟悉 .pth 文件,它用于存储训练好的模型。

但当你想在不同的环境(如 TensorRT、OpenVINO、ONNX Runtime)部署模型时,.pth 可能并不适用。这时,ONNX(Open Neural Network Exchange)就必不可少。

本文目录:

  • 什么是 .pth 文件?
  • 什么是 .onnx 文件?
  • 为什么要转换?
  • 如何转换 .pth.onnx
  • 转换后的好处和潜在风险

1. 什么是 .pth 文件?

.pthPyTorch 专属的模型权重文件,用于存储:

  1. 模型权重(state_dict):仅保存参数,不包含模型结构。
  2. 完整模型:包含模型结构和权重,适用于直接 torch.save(model, "model.pth") 保存的情况。

在 PyTorch 中,你可以用以下方式加载 .pth

import torch
from NestedUNet import NestedUNet  # 你的模型类

# 仅保存权重的加载方式
model = NestedUNet(num_classes=2, input_channels=3)
model.load_state_dict(torch.load("best_model.pth"))
model.eval()

.pth 文件只能在 PyTorch 运行的环境中使用,不能直接在 TensorFlow、OpenVINO 或 TensorRT

<think>好的,用户想将预训练PyTorch ResNet34模型.pth文件换为ONNX格式。我需要根据提供的引用资料来整理步骤,并确保回答正确。 首先,用户提供的引用中有几个关于ResNet模型换的例子,比如引用[2]和[4]提到了使用torch.onnx.export函数,以及设置export_params=True。引用[5]提到需要确定模型是保存了整个网络结构还是仅参数,这可能影响加载方式。 步骤应该是这样的:首先加载模型,确保模型结构和参数正确。然后准备输入张量,调用export函数。需要设置input_names和output_names,还有动态轴如果有需求。此外,引用[1]强调了export_params=True的重要性,必须包含进去。 需要注意用户可能遇到的常见问题,比如模型加载方式的不同(整个模型或仅参数),以及输入尺寸是否正确。还要验证ONNX模型是否正确,可以使用onnxruntime进行检查。 最后,生成相关问题,比如性能优化、部署应用等,参考之前的示例结构。</think>### 分步解答:PyTorch ResNet34模型换为ONNX格式 #### 步骤1:加载预训练模型 1. **确定模型保存方式**: - 若`.pth`文件保存了完整模型结构+参数(如`torch.save(model, 'model.pth')`),直接加载: ```python model = torch.load('resnet34.pth') ``` - 若仅保存参数(如`torch.save(model.state_dict(), 'model.pth')`),需先实例化模型结构再加载权重: ```python model = resnet34() # 需提前导入ResNet34类定义 model.load_state_dict(torch.load('resnet34.pth')) ``` 引用[5]提到需测试模型加载方式以避免错误[^5]。 #### 步骤2:设置模型为推理模式 ```python model.eval() # 关闭Dropout/BatchNorm等训练专用层 ``` #### 步骤3:定义输入张量与换函数 ```python import torch # 定义符合模型要求的输入尺寸(例如ResNet34常用224x224) dummy_input = torch.randn(1, 3, 224, 224) # (batch_size, channels, H, W) # 换核心函数 torch.onnx.export( model, dummy_input, "resnet34.onnx", export_params=True, # 必须包含权重参数[^1] input_names=["input"], output_names=["output"], dynamic_axes={ "input": {0: "batch_size"}, # 支持动态batch_size "output": {0: "batch_size"} } ) ``` #### 步骤4:验证ONNX模型 使用`onnxruntime`检查模型是否有效: ```python import onnxruntime as ort ort_session = ort.InferenceSession("resnet34.onnx") outputs = ort_session.run(None, {"input": dummy_input.numpy()}) print("ONNX输出形状:", outputs[0].shape) # 应为(1, 1000) ``` #### 常见问题与优化 1. **输入尺寸匹配**:若训练时使用非标准输入(如96x96),需在换时保持一致[^3]。 2. **动态维度**:通过`dynamic_axes`参数支持可变输入尺寸(如不同batch_size)。 3. **算子兼容性**:部分PyTorch算子需替换为ONNX支持的版本,可通过添加`opset_version=11`参数指定算子集版本。 ### 应用场景示例 - **跨平台部署**:ONNX模型部署至TensorRT、OpenVINO等推理框架[^4]。 - **Web集成**:通过ONNX.js在浏览器中运行模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值