【深度学习】基于因果表示学习的CITRIS模型原理和实验

1.引言

1.1.本文的主要内容

理解动态系统中的潜在因果因素,对于智能代理在复杂环境中进行有效推理至关重要。本文将深入介绍CITRIS,这是一种基于变分自编码器(VAE)的框架,它能够从时间序列图像中提取并学习因果表示,即便这些图像中的潜在因素已经遭受了外部干预。CITRIS通过利用时间序列中的一致性以及干预行为(以橙色表示),有效地从图像序列中识别和区分出因果变量(以蓝色表示)。与传统的因果表示学习方法不同,CITRIS将因果变量视为可能具有多个维度的向量,而非单一的标量值。此外,CITRIS通过整合归一化流技术,能够灵活地扩展其应用,以利用并解耦由预训练自动编码器捕获的表示。这一创新方法不仅提高了因果表示的准确性,还为未来在模拟到现实世界场景中应用因果表示学习开辟了新的可能性。

在接下来的内容中,我们将首先概述迅速发展的因果表示学习(CRL)领域。随后,我们会深入探讨CITRIS的工作原理,包括它是如何从时间序列图像中识别和学习因果变量的。最后,我们将通过一系列精心设计的实验来验证CITRIS的性能和优势。

1.2.CITRIS模型简介

CITRIS模型是一个变分自编码器框架,旨在从时间图像序列中学习因果表示,其中潜在的因果因素可能已经受到了干预。

1.2.1.背景和动机

  • 在复杂多变的环境中,智能代理需要对周围世界的动态系统进行深入理解,以便做出准确的推理和决策。这要求代理能够识别并理解影响系统行为的潜在因果因素。例如,在自动驾驶车辆中,理解交通信号、行人和其他车辆之间的因果关系对于安全导航至关重要。

  • 为了实现这一目标,CITRIS模型应运而生。CITRIS是一种先进的变分自编码器框架,专门设计用于从时间图像序列中提取和学习因果表示。这些图像序列可能已经包含了由于外部干预而发生变化的潜在因素。CITRIS通过分析图像随时间的变化以及观察到的干预,能够识别出影响系统状态的关键变量。

  • CITRIS模型的核心优势在于其对因果变量的多维表示能力。与传统的标量因果变量不同,CITRIS能够处理更为复杂的多维因果因素,如3D空间中的旋转角度。这种能力使得CITRIS在处理高维数据时更为灵活和强大。

  • 此外,CITRIS通过引入归一化流,进一步扩展了其应用范围。归一化流允许CITRIS利用和解耦由预训练自动编码器获得的表示,这不仅提高了模型的泛化能力,也为将模型应用于未见过的因果因素实例提供了可能。这一点在模拟到现实世界的场景中尤为重要,因为它允许模型在现实世界中更好地应用和适应。

  • CITRIS的提出,不仅推动了因果表示学习领域的发展,也为智能代理在复杂环境中的决策和推理提供了新的工具和方法。随着技术的不断进步和应用的不断深入,CITRIS有望在未来的人工智能应用中发挥更大的作用。

1.2.2. 主要特点

  • 多维因果变量的识别:CITRIS的一个显著创新是其对因果变量的多维处理能力。在传统的因果表示学习中,因果因素通常被视为单一的标量值,这限制了模型处理复杂系统的能力。CITRIS通过将因果变量视为多维向量,能够更准确地捕捉和表示现实世界中的复杂因果关系。例如,在三维空间中分析物体的旋转和平移时,CITRIS能够同时考虑多个角度和位置维度。

  • 时间一致性与干预信息的融合:CITRIS框架利用时间序列数据中的一致性模式和已知的干预点(如图中的橙色标记),来识别和分离出影响图像序列的因果变量(如图中的蓝色标记)。这种方法不仅提高了因果推断的准确性,也使得模型能够更好地理解和预测系统在不同干预下的行为变化。

  • 归一化流的创新应用:CITRIS通过引入归一化流,实现了对预训练自动编码器表示的有效利用和解耦。归一化流提供了一种灵活的方法来转换和映射复杂的、纠缠的潜在表示,使其成为易于处理和分析的因果表示。这种能力极大地扩展了CITRIS的应用范围,使其不仅能够处理原始数据,还能够整合和改进现有的机器学习模型。

  • 泛化能力的增强:通过使用预训练的自动编码器,CITRIS能够学习到更为丰富和一般的特征表示。这种预训练策略不仅提高了模型对新数据的适应能力,还为模型提供了一种从模拟环境到现实世界场景的泛化桥梁。这对于机器人学习、自动驾驶车辆和其他需要高度适应性和泛化能力的领域尤为重要。

  • 实验验证的高效性能:CITRIS在多个数据集上的实验表明,它在恢复因果变量方面优于现有方法。无论是在处理3D渲染图像序列,还是在处理具有复杂动态的游戏环境数据时,CITRIS都能够展示出其在因果表示学习方面的卓越性能。

  • 未来研究方向的指引:CITRIS的提出为因果表示学习领域提供了新的研究方向,包括但不限于模拟到现实的泛化、多模态数据的因果理解、以及在更广泛的应用场景中部署和优化CITRIS模型。这些研究方向有望进一步推动人工智能在理解因果关系方面的进展。

1.2.3. 工作原理

  • 变分自编码器框架:CITRIS基于变分自编码器(VAE)的原理构建,这是一种强大的生成模型,能够学习数据的潜在表示。通过VAE框架,CITRIS可以对图像序列进行编码和解码,同时提取出有用的因果信息。

  • 时间一致性与因果识别:CITRIS通过分析图像序列中的时间一致性模式,识别出系统状态随时间变化的连贯性。结合已知的干预信息,CITRIS能够区分和识别出影响系统动态的关键因果变量,即使在存在外部干预的情况下也能保持识别的准确性。

  • 多维因果变量的处理:CITRIS不将因果变量视为单一的标量,而是作为多维向量进行处理。这种处理方式使得CITRIS能够捕捉更复杂的因果关系,例如在三维空间中物体的旋转和平移,这些通常涉及多个维度的相互作用。

  • 归一化流的集成:CITRIS通过引入归一化流,增强了模型对复杂因果结构的处理能力。归一化流是一种可逆的神经网络层,它允许模型对潜在表示进行复杂的变换,同时保持数据的完整性。这使得CITRIS能够从预训练的自动编码器中学习,并在此基础上进一步优化和解耦表示,以更好地捕捉因果关系。

  • 优化与扩展能力:归一化流的应用不仅提升了CITRIS对复杂数据的处理能力,还为模型的扩展提供了灵活性。CITRIS可以通过归一化流轻松地整合新的数据和先验知识,从而在不同的应用场景中实现更好的泛化和适应性。

综合来看,可以看出CITRIS模型是一个功能强大的因果表示学习框架,它结合了时间一致性和干预信息来识别图像序列中的因果变量,并通过引入归一化流来优化其性能。CITRIS的提出为理解动态系统的潜在因果因素提供了新的视角和方法,具有重要的理论意义和应用价值。

1.3.因果表示学习(CRL)

因果表示学习(CRL)是一个新兴的机器学习领域,旨在通过学习和利用因果模型语义赋予的潜变量形式的表示,来结合机器学习和因果关系的核心优势。因果表示学习(CRL)是在因果推断理论基础之上构建起来的新交叉学科,主要探讨如何通过机器学习来建立一种有效的因果表示,并促进机器学习的发展。它旨在从因果推断的角度出发,探究一个或多个变量之间的因果关系,从而获得有效的因果信息。

1.3.1.关键方面

  1. 因果图模型:根据变量间的因果关系,通过关系网络的形式确立变量间的因果关系,并发掘出变量间的关键决定因素,为因果推断提供重要参考数据。
  2. 因果表示学习技术:利用机器学习技术构建因果图模型,从该模型中推断每个变量对因果关系的影响程度,并对数据集中某些变量之间的因果关系进行统计建模。
  3. 因果效应估计:评估因果模型中一个变量对另一个变量的影响程度,这通常涉及到对因果关系的量化分析。
  4. 因果建模方法:建立能够描述变量间因果关系的数学模型,这些模型通常用于预测、解释和干预系统行为。

近年来,因果表示学习(CRL)成为机器学习领域的研究热点,并受到越来越多的关注。一些重要的概念已经提出,用于因果表示学习的新算法也已经发展出来,如深度因果表征网络(DCNN)和深度因果回归模型(DCRM)。这些算法在提取和利用因果信息方面表现出强大的能力,为解决许多技术挑战提供了有效手段。

1.3.2.应用领域

因果表示学习在自然语言处理、机器学习和计算机视觉等领域有可能发挥重要作用。例如,在自然语言处理中,因果表示学习可以帮助理解文本中的因果关系,从而提高文本分析和生成的质量。在机器学习中,因果表示学习可以用于构建更鲁棒和可解释的模型,从而提高模型的泛化能力和可信度。在计算机视觉中,因果表示学习可以帮助识别图像中的关键特征,并理解这些特征之间的因果关系,从而提高图像识别和理解的准确性。

2.CITRIS模型理论

2.1.因果表示学习

近几十年来,机器学习作为人工智能领域的一个重要分支,其相较于早期的AI方法,显著的优势在于能够自动地从高维数据中提取有用特征。尽管如此,机器学习主要依赖于数据中的统计特性,而非数据生成背后的因果机制,这导致其在面对跨领域泛化和策略规划等任务时常常力不从心。

与此相对,因果推断不局限于数据的统计描述,而是进一步探究在数据背后的系统模型中,进行外部干预的效果。这种因果推理的能力要求我们预先知道影响数据的因果变量及其相互关系。然而,在现实世界中,许多观测数据,如图像中的对象,最初并未以这种变量的形式呈现。

因此,因果表示学习(Causal Representation Learning, CRL)作为一个新兴的研究领域,旨在从图像、视频等低层次数据中识别和构建这些因果变量及其相互关系。核心思想是,低层次的观测数据 XXX可以视为对因果系统C1,…,CnC_1, \ldots, C_nC1,,Cn 状态的一个视图:

X=h(C1,…,Cn),X = h(C_1, \ldots, C_n),X=h(C1,,Cn),

其中h:C→Xh: \mathcal{C} \rightarrow \mathcal{X}h:CX表示从因果系统状态空间到观测空间的非线性映射。在CRL中,研究者致力于估计函数hhh的逆过程,例如使用神经网络将低层次的观测数据映射到对某些特定任务有用的高层次因果变量上。
在这里插入图片描述

2.1.1时间干预序列(TRIS)

CITRIS致力于在时间介入序列(TRIS)这一情境下识别因果变量。在TRIS框架中,我们假定存在一个由K个因果因素构成的潜在因果过程,这些因素以动态贝叶斯网络(DBN)的形式存在,表示为(C1,C2,...,CK)(C_1, C_2, ..., C_K)(C1,C2,...,CK)。在这个因果图G=(V,E)G = (V, E)G=(V,E)中,每个节点i对应一个因果因素CiC_iCi,可以是标量或向量,而每条边(i,j)(i, j)(i,j)代表从CiC_iCiCjC_jCj的因果关系。

在TRIS中,每个因果因素CiC_iCi在每个时间步t都有一个实例CitC_i^tCit,它的因果父节点仅能是前一时间步t-1的因果因素。这意味着我们考虑的DBN是一个随时间变化的K因素过程(C1t,C2t,...,CKt)t=1T(C_1^t, C_2^t, ..., C_K^t)_{t=1}^T(C1t,C2t,...,CKt)t=1T,这些因素根据DBN的时序动态而演变。此外,TRIS假设在每个时间步,一些因果因素可能已经被介入,我们可以知道介入的目标(尽管不知道具体的介入值)。介入目标用二进制向量It∈{ 0,1}KI^t \in \{0, 1\}^KIt{ 0,1}K表示,其中第i个分量如果是1,则表示因果因素CiC_iCi在时间t被介入了。

在TRIS中,我们实际上并不直接观察到因果因素(Ct)t=1T(C^t)_{t=1}^T(Ct)t=1T,而是只能获得伴随相应介入目标(It)t=2T(I^t)_{t=2}^T(It)t=2T的高维观察序列(Xt)t=1T(X^t)_{t=1}^T(Xt)t=1T。每个观察都是所有因果因素的噪声和混合视图。形式上,Xt=h(C1t,C2t,...,CKt,Eot)X^t = h(C_1^t, C_2^t, ..., C_K^t, E_o^t)Xt=h(C1t,C2t,...,CKt,Eot),其中EotE_o^tEot代表噪声,而h:C×E→Xh: \mathcal{C} \times \mathcal{E} \rightarrow \mathcal{X}h:C×EX是从因果因素空间C\mathcal{C}C和噪声变量空间E\mathcal{E}E映射到观察空间X\mathcal{X}X的函数。
在这里插入图片描述

TRIS的设置非常通用,能够涵盖许多动态系统。实际上,CITRIS(以及iCITRIS,我们在这篇文档中没有讨论)已经成功地在从3D渲染对象到弹球和乒乓球等不同设置中识别出了因果结构。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在本文的后续部分,我们将专注于Causal3DIdent数据集,并在下一部分中提供更详细的描述。

2.1.2加载数据集

接下来,我们将探索Causal3DIdent数据集。该数据集包含了一系列图像,并且每个时间点都配有相应的干预目标。在下方的代码单元中,我们将载入数据集的一个小型样本进行查看。

# 导入需要的库  
import numpy as np  
import os  
  
# 假设 'CITRIS_DL2' 是包含 'data' 文件夹的目录,而 'causal3d.npz' 是 'data' 文件夹中的一个文件  
# 使用 np.load 函数加载 'causal3d.npz' 文件,并将结果存储在一个名为 causal3d_dataset 的字典中  
causal3d_dataset = dict(np.load(os.path.join('CITRIS_DL2', 'data', 'causal3d.npz')))  
  
# 打印出 causal3d_dataset 字典中所有的键(即NumPy数组的名称)  
print(causal3d_dataset.keys())  
  
# 中文注释:  
# 这段代码的目的是从 'CITRIS_DL2' 目录下的 'data' 文件夹中加载一个名为 'causal3d.npz' 的NumPy压缩文件。  
# np.load 函数会返回一个类似字典的对象,其中包含了文件中存储的所有NumPy数组。  
# 使用 dict() 函数将这个类似字典的对象转换为真正的字典,方便后续处理。  
# 最后,使用 print 函数打印出这个字典中所有的键,即存储在 'causal3d.npz' 文件中的所有NumPy数组的名称。

干预目标指出了哪些因果变量受到了干预。在Causal3DIdent数据集中,我们关注以下7个因果变量,它们总共包含了11个因果维度:

变量 取值范围
对象位置 (pos_o) [x,y,z]∈[−2,2]3[x, y, z] \in [-2, 2]^3[x,y,z][2,2]3
对象旋转 (rot_o) [α,β]∈[0,2π)2[\alpha, \beta] \in [0, 2\pi)^2[α,β][0,2π)2
聚光灯旋转 (rot_s) θ∈[0,2π)\theta \in [0, 2\pi)θ[0,2π)
对象色调 (hue_o) hobj∈[0,2π)h_\text{obj} \in [0, 2\pi)hobj[0,2π)
聚光灯色调 (hue_s) hlight∈[0,2π)h_\text{light} \in [0, 2\pi)hlight[0,
【干货书】《因果推理导论-机器学习角度》,132页pdf 有几个主要的主题贯穿全书。这些主题主要是对两个不同类别的比较。当你阅读的时候,很重要的一点是你要明白书的不同部分适合什么类别,不适合什么类别。 统计与因果。即使有无限多的数据,我们有时也无法计算一些因果量。相比之下,很多统计是关于在有限样本中解决不确定性的。当给定无限数据时,没有不确定性。然而,关联,一个统计概念,不是因果关系。在因果推理方面还有更多的工作要做,即使在开始使用无限数据之后也是如此。这是激发因果推理的主要区别。我们在这一章已经做了这样的区分,并将在整本书中继续做这样的区分。 识别与评估。因果效应的识别是因果推论所独有的。这是一个有待解决的问题,即使我们有无限的数据。然而,因果推理也与传统统计机器学习共享估计。我们将主要从识别因果效应(在第2章中,46)之前估计因果效应(第7章)。例外是2.5节节4.6.2,我们进行完整的例子估计给你的整个过程是什么样子。 介入与观察。如果我们能进行干预/实验因果效应的识别就相对容易了。这很简单,因为我们可以采取我们想要衡量因果效应的行动,并简单地衡量我们采取行动后的效果。观测数据变得更加复杂,因为数据中几乎总是引入混杂。 假设。将会有一个很大的焦点是我们用什么假设来得到我们得到的结果。每个假设都有自己的框来帮助人们注意到它。清晰的假设应该使我们很容易看到对给定的因果分析或因果模型的批评。他们希望,清晰地提出假设将导致对因果关系的更清晰的讨论。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MUKAMO

你的鼓励是我们创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值